Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 5763, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28720812

ABSTRACT

Light extraction from a thin planar layer can be increased by introducing a two-dimensional periodic pattern on its surface. This structure, the so-called photonic crystal (PhC) slab, then not only enhances the extraction efficiency of light but can direct the extracted emission into desired angles. Careful design of the structures is important in order to have a spectral overlap of the emission with extraction (leaky) modes. We show that by fabricating PhC slabs with optimized dimensions from silicon nanocrystals (SiNCs) active layers, the extraction efficiency of vertical light emission from SiNCs at a particular wavelength can be enhanced ∼ 11 times compared to that of uncorrugated SiNCs-rich layer. More importantly, increased light emission can be obtained in a broad spectral range and, simultaneously, the extracted light can stay confined within relatively narrow angle around the normal to the sample plane. We demonstrate experimentally and theoretically that the physical origin of the enhancement is such that light originating from SiNCs first couples to leaky modes of the PhCs and is then efficiently extracted into the surrounding.

2.
Opt Express ; 20(7): 7071-80, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22453388

ABSTRACT

One of the possibilities of increasing optical gain of a light emitting source is by embedding it into a photonic crystal (PhC). If the properties of the PhC are tuned so that the emission wavelength of the light source with gain falls close to the photonic band edge of the PhC, then due to low group velocity of the light modes near the band edge caused by many multiple reflections of light on the photonic structure, the stimulated emission can be significantly enhanced. Here, we perform simulation of the photonic band edge effect on the light intensity of spectrally broad source interacting with a diamond PhC with low optical gain. We show that even for the case of low gain, up to 10-fold increase of light intensity output can be obtained for the two-dimensional PhC consisting of only 19 periodic layers of infinitely high diamond rods ordered into a square lattice. Moreover, considering the experimentally feasible structure composed of diamond rods of finite height - PhC slab - we show that the gain enhancement, even if reduced compared to the ideal case of infinite rods, still remains relatively high. For this particular structure, we show that up to 3.5-fold enhancement of light intensity can be achieved.


Subject(s)
Amplifiers, Electronic , Computer-Aided Design , Diamond/chemistry , Models, Theoretical , Refractometry/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Photons , Scattering, Radiation
3.
Opt Express ; 18(24): 25241-9, 2010 Nov 22.
Article in English | MEDLINE | ID: mdl-21164871

ABSTRACT

We present a study of ultrafast carrier transfer from highly luminescent states inside the core of silicon nanocrystal (due to quasidirect transitions) to states on the nanocrystal-matrix interface. This transfer leads to a sub-picosecond luminescence decay, which is followed by a slower decay component induced by carrier relaxation to lower interface states. We investigate the luminescence dynamics for two different surface passivation types and we propose a general model describing spectral dependence of ultrafast carrier dynamics. Our results stress the crucial role of the energy distribution of the interface states on surface-related quenching of quasidirect luminescence in silicon nanocrystals. We discuss how to avoid this quenching in order to bring the attractive properties of the quasidirect recombination closer to exploitation.

4.
Rev Sci Instrum ; 81(6): 063104, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20590222

ABSTRACT

Intensified charge-coupled devices (ICCDs) comprise the advantages of both fast gating detectors and spectrally broad CCDs into one device that enables temporally and spectrally resolved measurements with a few nanosecond resolution. Gating of the measured signal occurs in the image intensifier tube, where a high voltage is applied between the detector photocathode and a microchannel plate electron multiplier. An issue arises in time-resolved luminescence spectroscopy when signal onset characterization is required. In this case, the transient gate closing process that causes the detected signal always arises in the middle of the ICCD chip regardless of the spectral detection window--the so-called irising effect. We demonstrate that in case when the detection gate width is comparable to the opening/closing time and the gate is pretriggered with respect to the signal onset, the irising effect causes the obtained data to be strongly distorted. At the same time, we propose a software procedure that leads to the spectral correction of the irising effect and demonstrate its validity on the distorted data.

SELECTION OF CITATIONS
SEARCH DETAIL
...