Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Neurosci Methods ; 379: 109676, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35850297

ABSTRACT

Biological tissues contain various metals and metalloids ions with central role in the regulation of several pathophysiological functions. In parallel, the development and the evaluation of novel nanocompounds for biomedicine require the monitoring of their biodistribution in tissues of interest. Therefore, researchers need to use reliable and accessible techniques to detect and quantify major and trace elements in space-resolved manner. In this communication, we report how Laser-Induced Breakdown Spectroscopy (LIBS) can be used to image the distribution of chemical elements in brain tissues.


Subject(s)
Lasers , Spectrum Analysis/methods , Tissue Distribution
2.
Appl Spectrosc ; 76(8): 978-987, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35156401

ABSTRACT

Lime mortar is a complex mixture resulting from hardening of lime, water, and aggregates. Lime mortar was used from the time of the Roman Empire until the Industrial Revolution. The recipes used differ according to the period, geographical area of preparation, craftsman, or function. This is why the study of archaeological mortars is of such great importance in building archaeology. In this study, we used laser-induced breakdown spectroscopy (LIBS) to characterize the elemental composition of three lime mortar samples with a µ-LIBS instrument, allowing elemental image compilation. These samples originate from three different geographical locations: Angers (France), Dardilly (France), and Pompeii (Italy), and were taken from buildings that had different functions: cathedral, aqueduct, and house, respectively. Thanks to image processing and the creation of masks, it was possible to extract not only the lime signature and nature of the aggregate but also its granulometry and circularity. All this information is essential for cultural heritage research. This study shows the potential of the LIBS technique in archaeometric analysis of archaeological mortars.

3.
Anal Chim Acta ; 1185: 339070, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34711325

ABSTRACT

Self-absorption of spectral lines is known to lower the performance of analytical measurements via calibration-free laser-induced breakdown spectroscopy. However, the error growth due to this effect is not clearly assessed. Here we propose a method to quantify the measurement error due to self-absorption based on the calculation of the spectral radiance of a plasma in local thermodynamic equilibrium. Validated through spectroscopic measurements for a binary alloy thin film of compositional gradient, the method evidences that measurement performance lowering due to self-absorption depends on the spectral shape of the analytical transition and on the intensity measurement method. Thus, line-integrated intensity measurements of Stark broadened lines enable accurate analysis, even at large optical thickness, if line width and plasma size are precisely known. The error growth due to self-absorption is significantly larger for line shapes dominated by Doppler broadening and for line-center intensity measurements. The findings present a significant advance in compositional measurements via calibration-free laser-induced breakdown spectroscopy, as they enable straightforward selection of most appropriate analytical lines.

4.
Anal Chim Acta ; 1114: 66-73, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32359516

ABSTRACT

Today, Laser-Induced Breakdown Spectroscopy (LIBS) imaging is in full change. Indeed, always more stable instrumentations are developed, which significantly increases the signal quality and naturally the analytical potential of the technique for the characterization of complex and heterogeneous samples at the micro-scale level. Obviously, other intrinsic features such as a limit of detection in the order of ppm, a high field of view and high acquisition rate make it one of the most complete chemical imaging techniques to date. It is thus possible in these conditions to acquire several million spectra from one single sample in just hours. Managing big data in LIBS imaging is the challenge ahead. In this paper, we put forward a new spectral analysis strategy, called embedded k-means clustering, for simultaneous detection of major and minor compounds and the generation of associated localization maps. A complex rock section with different phases and traces will be explored to demonstrate the value of this approach.

5.
Anal Chem ; 91(3): 2544-2550, 2019 Feb 05.
Article in English | MEDLINE | ID: mdl-30615420

ABSTRACT

Elemental analyses of thin films with complex composition are challenging as the standard analytical techniques based on measurement calibration are difficult to apply. We show that calibration-free laser-induced breakdown spectroscopy (LIBS) presents a powerful solution, enabling quantitative analyses of multielemental thin films with analytical performances better than those obtained with other techniques. The demonstration is given for a nickel-chromium-molybdenum alloy film of 150 nm thickness that was produced by pulsed laser deposition. The LIBS spectra were recorded under experimental conditions that enable simple and accurate modeling of plasma emission. Thus, a calibration-free approach based on the calculation of the spectral radiance of a uniform plasma in local thermodynamic equilibrium was applied to deduce the elemental composition. Supported by analyses via Rutherford backscattering spectrometry and energy-dispersive X-ray spectroscopy, the LIBS measurements evidence nonstoichiometric mass transfer of the alloy during the thin-film deposition process. This technique could be used even for thinner films, provided that the film-composing elements are not present in the substrate.

6.
Nanoscale ; 10(39): 18657-18664, 2018 Oct 21.
Article in English | MEDLINE | ID: mdl-30264838

ABSTRACT

We report in this study the in vivo biodistribution of ultra-small luminescent gold (Au) particles (∼1.5 nm core size; 17 kDa), so-called nanoclusters (NCs), stabilized by bidentate zwitterionic molecules in subcutaneous (s.c.) and orthotopic glioblastoma mice models. Particular investigations on renal clearance and tumor uptake were performed using highly sensitive advanced imaging techniques such as multi-elemental Laser-Induced Breakdown Spectroscopy (LIBS) imaging and in-line X-ray Synchrotron Phase Contrast Tomography (XSPCT). Results show a blood circulation time of 6.5 ± 1.3 min accompanied by an efficient and fast renal clearance through the cortex of the kidney with a 66% drop between 1 h and 5 h. With a similar size range, these Au NCs are 5 times more fluorescent than the well-described Au25GSH18 NCs in the near-infrared (NIR) region and present significantly stronger tumor uptake and retention illustrated by an in vivo s.c. tumor-to-skin ratio of 1.8 measured by non-invasive optical imaging and an ex vivo tumor-to-muscle of 6.1. This work highlights the pivotal role of surface coating in designing optimum Au NC candidates for cancer treatment.


Subject(s)
Contrast Media , Glioblastoma/diagnostic imaging , Gold , Metal Nanoparticles , Neoplasms, Experimental/diagnostic imaging , Tomography, Optical , Animals , Cell Line, Tumor , Contrast Media/chemistry , Contrast Media/pharmacology , Female , Gold/chemistry , Gold/pharmacology , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Mice , Mice, Nude , Tomography, X-Ray
7.
Mod Pathol ; 31(3): 378-384, 2018 03.
Article in English | MEDLINE | ID: mdl-29148536

ABSTRACT

Pathologists typically encounter many disparate exogenous materials in clinical specimens during their routine histopathological examinations, especially within the skin, lymph nodes, and lungs. These foreign substances may be free extracellular deposits or induce several clinical abnormalities or histopathological patterns. However, pathologists almost never investigate or report the chemical nature of exogenous metals in clinical specimens due to a lack of convenient and available technologies. In this paper, a novel strategy based on laser-induced breakdown spectroscopy (LIBS) technology is evaluated for in situ multi-elemental tissue imaging. The improved procedures allow visualization of the presence of chemical elements contained within paraffin-embedded specimens of medical interest with elemental images that are stackable with conventional histology images. We selected relevant medical situations for which the associated pathology reports were limited to the presence of lymphohistiocytic and inflammatory cells containing granules (a granuloma and a pseudolymphoma) or to lymph nodes or skin tissues containing pigments or foreign substances. Exogenous elements such as aluminum, titanium, copper, and tungsten were identified and localized within the tissues. The all-optical LIBS elemental imaging instrument that we developed is fully compatible with conventional optical microscopy used for pathology analysis. When combined with routine histopathological analysis, LIBS is a versatile technology that might help pathologists establish or confirm diagnoses for a wide range of medical applications, particularly when the nature of external agents present in tissues needs to be investigated.


Subject(s)
Foreign-Body Reaction/pathology , Spectrophotometry, Atomic/methods , Humans , Lasers , Lymph Nodes/chemistry , Lymph Nodes/ultrastructure , Metals/analysis , Paraffin Embedding , Retrospective Studies , Skin/chemistry , Skin/ultrastructure
8.
Environ Sci Pollut Res Int ; 24(3): 2197-2204, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27543127

ABSTRACT

Cave walls are affected by different kinds of alterations involving preservative issues in the case of ornate caves, in particular regarding the rock art covering the walls. In this context, coralloids correspond to a facies with popcorn-like aspect belonging to the speleothem family, mostly composed of calcium carbonate. The elemental characterization indicates the presence of elements that might be linked to the diagenesis and the expansion of the alterations as demonstrated by prior analyses on stalagmites. In this study, we report the use of laser-induced breakdown spectroscopy (LIBS) to characterize the elemental composition of one coralloid sample with a portable instrument allowing punctual measurements and a laboratory mapping setup delivering elemental images with spatial resolution at the micrometric scale, being particularly attentive to Mg, Sr, and Si identified as elements of interest. The complementarity of both instruments allows the determination of the internal structure of the coralloid. Although a validation based on a reference technique is necessary, LIBS data reveal that the external layer of the coralloid is composed of laminations correlated to variations of the LIBS signal of Si. In addition, an interstitial layer showing high LIBS signals for Fe, Al, and Si is interpreted to be a detrital clay interface between the external and the internal part of the coralloid. These preliminary results sustain a possible formation scenario of the coralloid by migration of the elements from the bedrock.


Subject(s)
Calcium Carbonate , Caves , Spectrum Analysis , Archaeology , Art , Lasers
9.
Anal Bioanal Chem ; 400(10): 3331-40, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21465098

ABSTRACT

This study aims at differentiating several organic materials, particularly polymers, by laser induced breakdown spectroscopy. The goal is to apply this technique to the fields of polymer recycling and cultural heritage conservation. We worked with some usual polymers families: polyethylene (PE), polypropylene (PP), polyoxymethylene, (POM), poly(vinyl chloride), polytetrafluoroethylene, polyoxyethylene (POE), and polyamide for the aliphatic ones, and poly(butylene terephthalate), acrylonitrile-butadiene-styrene, polystyrene, and polycarbonate for the aromatic ones. The fourth harmonic of a Nd:YAG laser (266 nm) in ambient air at atmospheric pressure was used. A careful analysis of the C(2) Swan system (0,0) band in polymers containing no C-C (POM), few C-C (POE), or aromatic C-C linkages led us to the conclusion that the C(2) signal might be native, i.e., the result of direct ablation from the sample. With use of these results, aliphatic and aromatic polymers could be differentiated. Further data treatments, such as properly chosen line ratios, principal component analysis, and partial least squares regression, were evaluated. It was shown that many polymers could be separated, including PE and PP, despite their similar chemical structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...