Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Phys ; 129(9)2021.
Article in English | MEDLINE | ID: mdl-36575704

ABSTRACT

Plasmonic nanostructures attract tremendous attention as they confine electromagnetic fields well below the diffraction limit while simultaneously sustaining extreme local field enhancements. To fully exploit these properties, the identification and classification of resonances in such nanostructures is crucial. Recently, a novel figure of merit for resonance classification has been proposed1 and its applicability was demonstrated mostly to toy model systems. This novel measure, the energy-based plasmonicity index (EPI), characterizes the nature of resonances in molecular nanostructures. The EPI distinguishes between either a single-particle-like or a plasmonic nature of resonances based on the energy space coherence dynamics of the excitation. To advance the further development of this newly established measure, we present here its exemplary application to characterize the resonances of graphene nanoantennas. In particular, we focus on resonances in a doped nanoantenna. The structure is of interest, as a consideration of the electron dynamics in real space might suggest a plasmonic nature of selected resonances in the low doping limit but our analysis reveals the opposite. We find that in the undoped and moderately doped nanoantenna, the EPI classifies all emerging resonances as predominantly single-particle-like and only after doping the structure heavily, the EPI observes plasmonic response.

SELECTION OF CITATIONS
SEARCH DETAIL
...