Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 14(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38391985

ABSTRACT

Custom electronics tailored for ultrasonic applications with four ultrasonic transmit-receive channels and a nominal 25 MHz single channel frequency were developed for ultrasound BAW and SAW biosensor uses. The designed integrated microcontroller, supported by Python with a SciPy library, and the developed system measured the time of flight (TOF) and other wave properties to characterize the acoustic properties of a bulk of the liquid in a microchannel or acoustic properties of biological species attached to an analytic surface in real time. The system can utilize both piezoelectric and capacitive micromachined ultrasound transducers. The device demonstrated a linear response to changes in water salinity. This response was primarily attributed to the time-of-flight (TOF) changes related to the varying solution density. Furthermore, real-time DNA oligonucleotide-based interactions between oligonucleotides immobilized on the device's analytical area and oligonucleotides attached to gold nanoparticles (Au NPs) in the solution were demonstrated. The biological interaction led to an exponential decrease in the acoustic interfacial wave propagating across the interface between the solution and the solid surface of the sensor, the TOF signal. This decrease was attributed to the increase in the effective density of the solution in the vicinity of the sensor's analytical area, as Au NPs modified by oligonucleotides were binding to the analytical area. The utilization of Au NPs in oligonucleotide surface binding yields a considerably stronger sensor signal than previously observed in earlier CMUT-based TOF biosensor prototypes.


Subject(s)
Metal Nanoparticles , Ultrasonics , Gold , Transducers , Equipment Design , Oligonucleotides
2.
Sensors (Basel) ; 23(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37960526

ABSTRACT

A capacitive micromachined ultrasound transducer (CMUT) was engineered and functionalized with zeolitic imidazolate framework-8 (ZIF-8) dispersed in a photoresist AZ1512HS (AZ) matrix to function as a gravimetric gas sensor. The sensor response was recorded in the presence of nitrogen, argon, carbon dioxide, and methane gases as well as water, acetylene, a propane/butane mixture, n-hexane, gasoline, and diesel vapors. The photoresist matrix alone was found to have a negligible response to all the gases and vapors, except for water vapor. No visible difference in sensor response was detected when switching from nitrogen to methane gas. However, a strong shift in the sensor resonance frequency was observed when exposed to higher hydrocarbons, ranging from 1 kHz for acetylene to 7.5 kHz for gasoline. Even longer-chain hydrocarbons, specifically kerosene and more so diesel, had a significantly reduced sensor frequency shift compared with gasoline. Sensors functionalized with a thin film of AZ+ZIF-8 demonstrated higher sensitivity in their response to a hydrocarbon molecular mass than without functionalization.

3.
Micromachines (Basel) ; 14(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37241635

ABSTRACT

The effect of microchannel height on acoustic streaming velocity and capacitive micromachined ultrasound transducer (CMUT) cell damping was investigated. Microchannels with heights ranging from 0.15 to 1.75 mm were used in experiments, and computational microchannel models with heights varying from 10 to 1800 micrometers were simulated. Both simulated and measured data show local minima and maxima of acoustic streaming efficiency associated with the wavelength of the `bulk acoustic wave excited at 5 MHz frequency. Local minima occur at microchannel heights that are multiples of half the wavelength (150 µm), which are caused by destructive interference between excited and reflected acoustic waves. Therefore, microchannel heights that are not multiples of 150 µm are more favorable for higher acoustic streaming effectiveness since destructive interference decreases the acoustic streaming effectiveness by more than 4 times. On average, the experimental data show slightly higher velocities for smaller microchannels than the simulated data, but the overall observation of higher streaming velocities in larger microchannels is not altered. In additional simulation, at small microchannel heights (10-350 µm), local minima at microchannel heights that are multiples of 150 µm were observed, indicating the interference between excited and reflected waves and causing acoustic damping of comparatively compliant CMUT membranes. Increasing the microchannel height to over 100 µm tends to eliminate the acoustic damping effect as the local minima of the CMUT membrane swing amplitude approach the maximum value of 42 nm, which is the calculated amplitude of the freely swinging membrane under the described conditions. At optimum conditions, an acoustic streaming velocity of over 2 mm/s in a 1.8 mm-high microchannel was achieved.

4.
Sensors (Basel) ; 22(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35336459

ABSTRACT

The trade-off between the functionalization shift of the informative parameters and sensitivity of capacitive micromachined ultrasound transducers (CMUT)-based CO2 sensors is addressed, and the CMUT surface modification process by thin inkjet-printed polyethyleneimine (PEI) films is optimized. It was shown that by the proper preparation of the active CMUT surface and properly diluted PEI solution, it is possible to minimize the functionalization shift of the resonance frequency and the quality of the resonance and preserve the sensitivity potential. So, after optimization, we demonstrated 23.2 kHz frequency shift readings of the sensor with 16 MHz nominal frequency while in the gas chamber and switching between pure N2 and CO2. After testing the sensors with different PEI film thickness, it was confirmed that a 200 nm average thickness of a PEI film is an optimum, because this is the practical limit of CO2 absorption depth at given conditions. Additionally, we note that modification of the hydrophilic/hydrophobic properties of the CMUT surface allows changing the nanoscale surface roughness of the printed PEI film and controlling the area resolution of the inkjet functionalization by reducing the diameter of a single dot down to 150 µm by a commercially available printer cartridge.

5.
Sensors (Basel) ; 20(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585954

ABSTRACT

This review paper discusses the advances of the gravimetric detection devices based on capacitive micromachined ultrasound transducers structure. Principles of gravimetric operation and device modeling are reviewed through the presentation of an analytical, one-dimensional model and finite element modeling. Additionally, the most common fabrication techniques, including sacrificial release and wafer bonding, are discussed for advantages for gravimetric sensing. As functional materials are the most important part of the selective gravimetric sensing, the review of different functional material properties and coating and application methods is necessary. Particularly, absorption and desorption mechanisms of functional materials, like methylated polyethyleneimine, with examples of applications for gas sensing and using immune complexes for specific biomolecules detection are reviewed.


Subject(s)
Microtechnology , Transducers , Ultrasonics , Equipment Design , Ultrasonography
6.
Ultrasonics ; 99: 105956, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31288119

ABSTRACT

The improvement of the micromachined ultrasound transducer based (CMUT) biosensor fabrication technology and signal processing, which led to higher signal to noise ratio is reported. The biosensor contains interdigitally arranged CMUT structure with gold-coated analytical area. It is assembled with the plexiglass microchannels. CMUTs were fabricated with the wafer bonding technology for 5 MHz operation in immersion. For signal processing the convolutional neural network (CNN) was developed and trained to classify the sensor data to different propagation delay values. For training of the network 750 thousand signals representing different properties of the bioanalyte and different noise conditions was simulated by the finite time difference domain (FDTD) model. The capability of the CNN algorithm to classify the propagation delay data was compared with the adaptive passband filter signal processing algorithm used in our previous version of the senor. Both sensing channels were run simultaneously with the reference liquids in the microchannel: deionized water switching to 0.9% saline. It was found that CNN channel is capable to improve the signal to noise ratio for this experiment to 75 dB, when the same property for the passband filter channel was only 60 dB. This led to the generalization about the advantage of CNN channel to provide 15 dB less of instrumental noise. Finally, the real-time detection ability of the bovine serum albumin (BSA) deposition on the analytical area of improved sensor was demonstrated.


Subject(s)
Biosensing Techniques , Neural Networks, Computer , Signal Processing, Computer-Assisted , Ultrasonics , Algorithms , Animals , Cattle , Equipment Design , Serum Albumin, Bovine , Signal-To-Noise Ratio , Transducers
7.
Sensors (Basel) ; 19(14)2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31340518

ABSTRACT

A gravimetric gas detection device based on surface functionalized Capacitive Micromachined Ultrasound Transducers (CMUTs) was designed, fabricated and tested for detection of carbon dioxide (CO2) and sulfur dioxide (SO2) mixtures in nitrogen. The created measurement setup of continuous data collection, integrated with an in-situ Fourier Transform Infrared (FT-IR) spectroscopy, allows for better understanding of the mechanisms and molecular interactions with the sensing layer (methylated poly(ethylene)imine) and its need of surface functionalization for multiple gas detection. During experimentation with CO2 gases, weak molecular interactions were observed in spectroscopy data. Linear sensor response to frequency shift was observed with CO2 concentrations ranging from 0.16 vol % to 1 vol %. Moreover, the Raman and FT-IR spectroscopy data showed much stronger SO2 and the polymer interactions, molecules were bound by stronger forces and irreversibly changed the polymer film properties. However, the sensor change in resonance frequency in the tested region of 1 vol % to 5 vol % SO2 showed a linear response. This effect changed not only the device resonance frequency but also affected the magnitude of electroacoustic impedance which was used for differentiating the gas mixture of CO2, SO2, in dry N2.

8.
Anal Chem ; 88(13): 6662-5, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27321769

ABSTRACT

We manufactured and tested a capacitive micromachined ultrasound transducer (CMUT)-based sensor for CO2 detection at environmentally relevant concentrations using polyethylenimine as a CO2 binding material. The assembly of a sensing chip was 10 × 20 mm, and up to 5 gases can potentially be detected simultaneously using a masking technique and different sensing materials. The limit of detection was calculated to be 0.033 CO2 vol % while the limit of quantification was calculated to be 0.102%. The sensor exhibited a linear response between 0.06% and 0.30% CO2 while concentrations close to those in flue gas can also be measured using dilution with inert gas.

SELECTION OF CITATIONS
SEARCH DETAIL
...