Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 11 01.
Article in English | MEDLINE | ID: mdl-36317871

ABSTRACT

A morbidostat is a bioreactor that uses antibiotics to control the growth of bacteria, making it well-suited for studying the evolution of antibiotic resistance. However, morbidostats are often too expensive to be used in educational settings. Here we present a low-cost morbidostat called the EVolutionary biorEactor (EVE) that can be built by students with minimal engineering and programming experience. We describe how we validated EVE in a real classroom setting by evolving replicate Escherichia coli populations under chloramphenicol challenge, thereby enabling students to learn about bacterial growth and antibiotic resistance.


Subject(s)
Drug Resistance, Bacterial , Escherichia coli Infections , Humans , Escherichia coli , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Bioreactors
2.
PLoS One ; 16(7): e0241734, 2021.
Article in English | MEDLINE | ID: mdl-34310599

ABSTRACT

Personal protective equipment (PPE) is crucially important to the safety of both patients and medical personnel, particularly in the event of an infectious pandemic. As the incidence of Coronavirus Disease 2019 (COVID-19) increases exponentially in the United States and many parts of the world, healthcare provider demand for these necessities is currently outpacing supply. In the midst of the current pandemic, there has been a concerted effort to identify viable ways to conserve PPE, including decontamination after use. In this study, we outline a procedure by which PPE may be decontaminated using ultraviolet (UV) radiation in biosafety cabinets (BSCs), a common element of many academic, public health, and hospital laboratories. According to the literature, effective decontamination of N95 respirator masks or surgical masks requires UV-C doses of greater than 1 Jcm-2, which was achieved after 4.3 hours per side when placing the N95 at the bottom of the BSCs tested in this study. We then demonstrated complete inactivation of the human coronavirus NL63 on N95 mask material after 15 minutes of UV-C exposure at 61 cm (232 µWcm-2). Our results provide support to healthcare organizations looking for methods to extend their reserves of PPE.


Subject(s)
COVID-19/prevention & control , Containment of Biohazards/methods , Decontamination/methods , Pandemics , SARS-CoV-2/radiation effects , Ultraviolet Rays , COVID-19/transmission , COVID-19/virology , Dose-Response Relationship, Radiation , Equipment Reuse , Health Personnel/education , Humans , Laboratories/organization & administration , Masks/virology , N95 Respirators/virology , Radiometry/statistics & numerical data , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology
3.
Am J Infect Control ; 49(4): 424-429, 2021 04.
Article in English | MEDLINE | ID: mdl-33186675

ABSTRACT

BACKGROUND: Filtering facepiece respirators (FFR) are critical for protecting essential personnel and limiting the spread of disease. Due to the current COVID-19 pandemic, FFR supplies are dwindling in many health systems, necessitating re-use of potentially contaminated FFR. Multiple decontamination solutions have been developed to meet this pressing need, including systems designed for bulk decontamination of FFR using vaporous hydrogen peroxide or ultraviolet-C (UV-C) radiation. However, the large scale on which these devices operate may not be logistically practical for small or rural health care settings or for ad hoc use at points-of-care. METHODS: Here, we present the Synchronous UV Decontamination System, a novel device for rapidly deployable, point-of-care decontamination using UV-C germicidal irradiation. We designed a compact, easy-to-use device capable of delivering over 2 J cm2 of UV-C radiation in one minute. RESULTS: We experimentally tested Synchronous UV Decontamination System' microbicidal capacity and found that it eliminates near all virus from the surface of tested FFRs, with less efficacy against pathogens embedded in the inner layers of the masks. CONCLUSIONS: This short decontamination time should enable care-providers to incorporate decontamination of FFR into a normal donning and doffing routine following patient encounters.


Subject(s)
COVID-19/prevention & control , Decontamination/instrumentation , Point-of-Care Systems , Respiratory Protective Devices/virology , SARS-CoV-2 , Ultraviolet Rays , COVID-19/virology , Decontamination/methods , Equipment Reuse , Humans
4.
Phys Biol ; 16(4): 041005, 2019 06 19.
Article in English | MEDLINE | ID: mdl-30991381

ABSTRACT

Whether the nom de guerre is Mathematical Oncology, Computational or Systems Biology, Theoretical Biology, Evolutionary Oncology, Bioinformatics, or simply Basic Science, there is no denying that mathematics continues to play an increasingly prominent role in cancer research. Mathematical Oncology-defined here simply as the use of mathematics in cancer research-complements and overlaps with a number of other fields that rely on mathematics as a core methodology. As a result, Mathematical Oncology has a broad scope, ranging from theoretical studies to clinical trials designed with mathematical models. This Roadmap differentiates Mathematical Oncology from related fields and demonstrates specific areas of focus within this unique field of research. The dominant theme of this Roadmap is the personalization of medicine through mathematics, modelling, and simulation. This is achieved through the use of patient-specific clinical data to: develop individualized screening strategies to detect cancer earlier; make predictions of response to therapy; design adaptive, patient-specific treatment plans to overcome therapy resistance; and establish domain-specific standards to share model predictions and to make models and simulations reproducible. The cover art for this Roadmap was chosen as an apt metaphor for the beautiful, strange, and evolving relationship between mathematics and cancer.


Subject(s)
Mathematics/methods , Medical Oncology/methods , Systems Biology/methods , Computational Biology , Computer Simulation , Humans , Models, Biological , Models, Theoretical , Neoplasms/diagnosis , Neoplasms/therapy , Single-Cell Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...