Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(26): 9459-9465, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35735657

ABSTRACT

During the last few decades, photonic integrated circuits have increased dramatically, facilitating many high-performance applications, such as on-chip sensing, data processing, and inter-chip communications. The currently dominating material platforms (i.e., silicon, silicon nitride, lithium niobate, and indium phosphide), which have exhibited great application successes, however, suffer from their own disadvantages, such as the indirect bandgap of silicon for efficient light emission, and the compatibility challenges of indium phosphide with the silicon industry. Here, we report a new dielectric platform using nanostructured bulk van der Waals materials. On-chip light propagation, emission, and detection are demonstrated by taking advantage of different van der Waals materials. Low-loss passive waveguides with MoS2 and on-chip light sources and photodetectors with InSe have been realised. Our proof-of-concept demonstration of passive and active on-chip photonic components endorses van der Waals materials for offering a new dielectric platform with a large material-selection degree of freedom and unique properties toward close-to-atomic scale manufacture of on-chip photonic and optoelectronic devices.

2.
Opt Lett ; 47(4): 734-737, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35167512

ABSTRACT

In the past few years, we have witnessed increased interest in the use of 2D materials to produce hybrid photonic nonlinear waveguides. Although graphene has attracted most of the attention, other families of 2D materials such as transition metal dichalcogenides have also shown promising nonlinear performance. In this work, we propose a strategy for designing silicon nitride waveguiding structures with embedded MoS2 for nonlinear applications. The transverse geometry of the hybrid waveguide is optimized for high third-order nonlinear effects using optogeometrical engineering and multiple layers of MoS2. Stacking multiple monolayers results in an improvement of two orders of magnitude compared to standard silicon nitride waveguides. The hybrid waveguide performance is then investigated in terms of four-wave mixing enhancement in micro-ring resonator configurations. A signal/idler conversion efficiency of -6.3 dB is reached for a wavelength of around 1.55 µm with a 5 mW pumping level.

3.
ACS Photonics ; 8(9): 2713-2721, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34553003

ABSTRACT

The heterogeneous integration of low-dimensional materials with photonic waveguides has spurred wide research interest. Here, we report on the experimental investigation and the numerical modeling of enhanced nonlinear pulse broadening in silicon nitride waveguides with the heterogeneous integration of few-layer WS2. After transferring a few-layer WS2 flake of ∼14.8 µm length, the pulse spectral broadening in a dispersion-engineered silicon nitride waveguide has been enhanced by ∼48.8% in bandwidth. Through numerical modeling, an effective nonlinear coefficient higher than 600 m-1 W-1 has been retrieved for the heterogeneous waveguide indicating an enhancement factor of larger than 300 with respect to the pristine waveguide at a wavelength of 800 nm. With further advances in two-dimensional material fabrication and integration techniques, on-chip heterostructures will offer another degree of freedom for waveguide engineering, enabling high-performance nonlinear optical devices, such as frequency combs and quantum light sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...