Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(11): e0206103, 2018.
Article in English | MEDLINE | ID: mdl-30399182

ABSTRACT

Whiteflies are among the world's most significant agricultural pests and chemical insecticides are extensively used to reduce crop damage to acceptable levels. However, nearly all insecticides pose a threat to the environment and alternative control methods, such as breeding of crop varieties that are inherently insect-resistant, are needed. Previously, a strong source of plant-age dependent resistance to the cabbage whitefly (Aleyrodes proletella) has been identified in the modern white cabbage (Brassica oleracea var. capitata) variety Rivera. However, nothing is known about the molecular mechanisms or the genes involved in this resistance. In the present study, a multidisciplinary approach combining transcriptome and metabolome profiling with genetic mapping was used to identify the molecular players of whitefly resistance in cabbage. Transcriptome profiles of young (susceptible) and older (resistant) Rivera plants were analyzed using RNA sequencing. While many genes involved in general processes were differentially expressed between both ages, several defense-related processes were overrepresented in the transcriptome profile of older plants. Hormone measurements revealed that jasmonic acid (JA) levels decreased upon whitefly infestation at both plant ages. Interestingly, abscisic acid (ABA) levels showed contrasting effects in response to whitefly infestation: ABA levels were reduced in young plants but induced in older plants upon whitefly feeding. Auxin levels were significantly lower in older plants compared with young plants, independent of whitefly presence, while glucosinolate levels were higher. Additionally, whitefly performance was monitored in an F2 population derived from a cross between Rivera and the susceptible white cabbage variety Christmas Drumhead. Significant QTL intervals were mapped on chromosome 2 and 9 for oviposition rate and whitefly adult survival, respectively. Several genes that were higher expressed in older plants and located in the identified QTL intervals were orthologous to Arabidopsis genes that have been related to ABA signaling, suggesting a role for ABA in the regulation of resistance towards whiteflies. Our results show that combining different omics approaches is a useful strategy to identify candidate genes underlying insect resistance.


Subject(s)
Abscisic Acid/metabolism , Brassica/parasitology , Chromosome Mapping/methods , Disease Resistance , Hemiptera/physiology , Metabolome/genetics , Plant Diseases/parasitology , Quantitative Trait Loci/genetics , Transcriptome/genetics , Animals , Brassica/genetics , Brassica/growth & development , Crosses, Genetic , Gene Expression Regulation, Plant , Glucosinolates/metabolism , Molecular Sequence Annotation , Phylogeny , Plant Diseases/genetics , Plant Growth Regulators/metabolism , Plant Leaves/parasitology , Principal Component Analysis , Signal Transduction
2.
Theor Appl Genet ; 127(8): 1805-16, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24927822

ABSTRACT

KEY MESSAGE: In a stacking study of eight resistance QTLs in lettuce against downy mildew, only three out of ten double combinations showed an increased resistance effect under field conditions. Complete race nonspecific resistance to lettuce downy mildew, as observed for the nonhost wild lettuce species Lactuca saligna, is desired in lettuce cultivation. Genetic dissection of L. saligna's complete resistance has revealed several quantitative loci (QTL) for resistance with field infection reductions of 30-50 %. To test the effect of stacking these QTL, we analyzed interactions between homozygous L. saligna CGN05271 chromosome segments introgressed into the genetic background of L. sativa cv. Olof. Eight different backcross inbred lines (BILs) with single introgressions of 30-70 cM and selected predominately for quantitative resistance in field situations were intercrossed. Ten developed homozygous lines with stacked introgression segments (double combinations) were evaluated for resistance in the field. Seven double combinations showed a similar infection as the individual most resistant parental BIL, revealing epistatic interactions with 'less-than-additive' effects. Three double combinations showed an increased resistance level compared to their parental BILs and their interactions were additive, 'less-than-additive' epistatic and 'more-than-additive' epistatic, respectively. The additive interaction reduced field infection by 73 %. The double combination with a 'more-than-additive' epistatic effect, derived from a combination between a susceptible and a resistant BIL with 0 and 30 % infection reduction, respectively, showed an average field infection reduction of 52 %. For the latter line, an attempt to genetically dissect its underlying epistatic loci by substitution mapping did not result in smaller mapping intervals as none of the 22 substitution lines reached a similar high resistance level. Implications for breeding and the inheritance of L. saligna's complete resistance are discussed.


Subject(s)
Disease Resistance/genetics , Lactuca/genetics , Lactuca/microbiology , Oomycetes/physiology , Plant Diseases/genetics , Plant Diseases/immunology , Quantitative Trait Loci/genetics , Chromosome Mapping , Crosses, Genetic , Epistasis, Genetic , Genotype , Hybridization, Genetic , Inbreeding , Lactuca/immunology , Plant Diseases/microbiology
3.
Metabolomics ; 9(1): 130-144, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23335867

ABSTRACT

An overview of the metabolic diversity in ripe fruits of a collection of 32 diverse pepper (Capsicum sp.) accessions was obtained by measuring the composition of both semi-polar and volatile metabolites in fruit pericarp, using untargeted LC-MS and headspace GC-MS platforms, respectively. Accessions represented C. annuum, C. chinense, C. frutescens and C. baccatum species, which were selected based on variation in morphological characters, pungency and geographic origin. Genotypic analysis using AFLP markers confirmed the phylogenetic clustering of accessions according to Capsicum species and separated C. baccatum from the C. annuum-C. chinense-C. frutescens complex. Species-specific clustering was also observed when accessions were grouped based on their semi-polar metabolite profiles. In total 88 semi-polar metabolites could be putatively identified. A large proportion of these metabolites represented conjugates of the main pepper flavonoids (quercetin, apigenin and luteolin) decorated with different sugar groups at different positions along the aglycone. In addition, a large group of acyclic diterpenoid glycosides, called capsianosides, was found to be highly abundant in all C. annuum genotypes. In contrast to the variation in semi-polar metabolites, the variation in volatiles corresponded well to the differences in pungency between the accessions. This was particularly true for branched fatty acid esters present in pungent accessions, which may reflect the activity through the acyl branch of the metabolic pathway leading to capsaicinoids. In addition, large genetic variation was observed for many well-established pepper aroma compounds. These profiling data can be used in breeding programs aimed at improving metabolite-based quality traits such as flavour and health-related metabolites in pepper fruits. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-012-0432-6) contains supplementary material, which is available to authorized users.

4.
Plant Biotechnol J ; 2(3): 233-40, 2004 May.
Article in English | MEDLINE | ID: mdl-17147614

ABSTRACT

Public concerns about the issue of the environmental safety of genetically modified plants have led to a demand for technologies allowing the production of transgenic plants without selectable (antibiotic resistance) markers. We describe the development of an effective transformation system for generating such marker-free transgenic plants, without the need for repeated transformation or sexual crossing. This system combines an inducible site-specific recombinase for the precise elimination of undesired, introduced DNA sequences with a bifunctional selectable marker gene used for the initial positive selection of transgenic tissue and subsequent negative selection for fully marker-free plants. The described system can be generally applied to existing transformation protocols, and was tested in strawberry using a model vector in which site-specific recombination leads to a functional combination of a cauliflower mosaic virus 35S promoter and a GUS encoding sequence, thereby enabling the histochemical monitoring of recombination events. Fully marker-free transgenic strawberry plants were obtained following two different selection/regeneration strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...