Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36850533

ABSTRACT

Tungsten oxide thin films with different thicknesses, crystallinity and morphology were synthesized by e-beam deposition followed by thermal treatment and acid boiling. The films with different surface morphologies were coated with gold nanoparticles and tested as optical sensing materials towards hydrogen. X-ray diffraction, scanning electron microscopy, ellipsometry and UV-VIS spectroscopy were employed to characterize the structural, morphological and optical properties of the film. We demonstrated a good response towards hydrogen in air, reaching a good selectivity among other common reducing gases, such as ammonia and carbon monoxide. The sensitivity has been proven to be highly dependent on the thickness and crystallinity of the samples.

2.
Materials (Basel) ; 15(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35329541

ABSTRACT

The realization of a c-axis oriented aluminum nitride thick film on aluminum substrates is a promising step in the development of transducers for applications with a working temperature up to about 600 °C. The present paper deals with the realization of AlN thick films by means of reactive magnetron sputtering with a pulsed DC power supply, operating in continuous mode for 50 h. Two values (0.4 and 0.8) of nitrogen concentration were used; operative pressure and power were set at 0.3 Pa and 150 W, respectively. The thickness of the obtained aluminum nitride films on the aluminum substrate, assessed with a profilometer, varied from 20 to 30 µm. The preferential orientation of AlN crystals was verified by X-ray diffraction. Finally, as the main focus of the investigation, the films underwent electrical characterization by means of an LCR-meter used on a parallel plate capacitor set-up and a test system based on a cantilever beam configuration. AlN conductivity and ε33 permittivity were derived in the 100 Hz-300 kHz frequency range. Magnetron sputtering operation with nitrogen concentration equal to 0.4 resulted in the preferred operative condition, leading to a d31 piezoelectric coefficient, in magnitude, of 0.52 × 10-12 C/N.

3.
Expert Opin Biol Ther ; 21(7): 977-981, 2021 07.
Article in English | MEDLINE | ID: mdl-33353448

ABSTRACT

Background: Mycosis fungoides (MF) is a low-grade T-cell lymphoma with primary cutaneous involvement accounting for more than half of all primary cutaneous lymphomas. The treatment of MF is very challenging due to the limited therapies available. Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and highly selective cancer treatment that employs a monoclonal antibody conjugated to a photo-absorber dye, the hydrophilic phthalocyanine IRdye 700DX® (IR700), and near infrared light. In this study, we investigated the effect of NIR-PIT on MF targeting the cell-surface antigen cutaneous lymphocyte antigen (CLA)Matherial and methods: MF derived My-La CD4+ cells were incubated with the anti-CLA antibody conjugated to IR700 and then irradiated with a 690 nm near-infrared light. Cell death was evaluated by propidium iodide staining and flow cytometry 24 hours after irradiation.Results: Treatment with anti-CLA or light irradiation exhibited very modest pro-death effects, whereas treatment with the anti-CLA antibody conjugated to IR700 and then irradiation with a 690 nm near-infrared light induced a substantial increase in death in the MF cell line.Conclusions: NIR-PIT targeting CLA to treat MF showed marked antitumour effects. As such, CLA-targeted NIR-PIT could be a promising treatment for MF and, possibly, other cutaneous diseases characterized by CLA+ skin infiltrating T-cells.


Subject(s)
Mycosis Fungoides , Skin Neoplasms , Animals , Cell Line, Tumor , Immunotherapy , Mice , Mice, Nude , Mycosis Fungoides/therapy , Oligosaccharides , Photosensitizing Agents , Sialyl Lewis X Antigen/analogs & derivatives , Skin Neoplasms/therapy
4.
Front Med (Lausanne) ; 8: 796884, 2021.
Article in English | MEDLINE | ID: mdl-34988101

ABSTRACT

Introduction: Subjects with erythropoietic protoporphyria rely on broad-spectrum sunscreens with high sun protection factor, which is not informative on efficacy in the absorption spectrum of protoporphyrin IX, spanning visible radiation and peaking around 408 nm. Photoactivation of protoporphyrin IX is responsible for painful skin photosensitivity in erythropoietic protoporphyria. The authors assessed the protective efficacy of six sunscreens in vitro in the absorption spectrum of protoporphyrin IX. Method: Transmittance measurements were performed in the 300-850 nm wavelengths on samples of six photoprotective products applied to polymethyl methacrylate plates. Porphyrin protection factor was calculated in the 300-700 nm region to provide a measurement for the efficacy of each product based on the action spectrum of protoporphyrin IX. Results: Product A showed the highest porphyrin protection factor among tested products with a median value of 4.22. Product A is a sunscreen containing organic filters, titanium dioxide and synthetic iron oxides, pigmentary grade active ingredients that absorb visible radiation. Other products showed inefficient protection in the visible, with transmittance between 75 and 95% at 500 nm. The low porphyrin protection factor of inorganic filter product B was attributed to particle micronization, as declared by the manufacturer. Conclusion: Adding porphyrin protection factor to sunscreen labeling could help patients with erythropoietic protoporphyria and other photosensitivity disorders identify products tailored on their specific needs. The development of sunscreens providing protection from visible radiation and excellent cosmetical tolerability could improve the lifestyle of patients with erythropoietic protoporphyria.

6.
Opt Express ; 26(26): 33841-33855, 2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30650816

ABSTRACT

PLAnetary Transits and Oscillations of stars (PLATO) is a medium sized mission (M3) selected by the European Space Agency (ESA) for launch in 2026. The PLATO payload includes 26 telescopes all based on a six-element refractive optical scheme. Some components will be eventually manufactured by S-FPL51, N-KZFS11 and S-FTM16 glass whose radiation resistance is partially or totally unknown. The radiation-resistance properties of such materials have been investigated by using a 60Co γ-rays source as probe. Each optical component has been characterized by a depth profile curve which describes the transmission loss as a function of the thickness in dependence of the impinging dose. A model to simulate the throughput of the whole instrument has been developed and used to verify the instrument performance considering different stellar spectra.

7.
Sensors (Basel) ; 15(1): 1138-47, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25585102

ABSTRACT

Innovative chips based on palladium thin films deposited on plastic substrates have been tested in the Kretschmann surface plasmon resonance (SPR) configuration. The new chips combine the advantages of a plastic support that is interesting and commercially appealing and the physical properties of palladium, showing inverted surface plasmon resonance (ISPR). The detection of DNA chains has been selected as the target of the experiment, since it can be applied to several medical early diagnostic tools, such as different biomarkers of cancers or cystic fibrosis. The results are encouraging for the use of palladium in SPR-based sensors of interest for both the advancement of biodevices and the development of hydrogen sensors.


Subject(s)
Palladium/chemistry , Plastics/chemistry , Surface Plasmon Resonance/instrumentation , Microscopy, Atomic Force
8.
Opt Express ; 20(7): 8006-14, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22453472

ABSTRACT

In this work we present the design of a Pd/B4C multilayer structure optimized for high reflectance at 6.67 nm. The structure has been deposited and also characterized along one year in order to investigate its temporal stability. This coating has been developed for the beam transport system of FERMI@Elettra Free Electron Laser: the use of an additional aperiodic capping layer on top of the structure combines the high reflectance with filter properties useful in rejecting the fundamental harmonic when the goal is to select the third FEL harmonic.


Subject(s)
Lasers , Lenses , Electrons , Equipment Design , Equipment Failure Analysis , Ultraviolet Rays
9.
Opt Express ; 19(15): 13963-73, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21934757

ABSTRACT

Novel capping layer structures have been deposited on periodic Mo/Si multilayers to optimize reflectance at 30.4 nm. Design, deposition and characterization of such coatings are presented. Most of the structures proposed show improved performance with respect to standard Mo/Si multilayers and are stable over time. Reflectance at 121.6 nm and in the visible spectral range have been also tested to explore the applicability of such coatings to the Multi Element Telescope for Imaging and Spectroscopy (METIS) instrument, a coronagraph being developed for the ESA Solar Orbiter platform.

10.
Opt Lett ; 36(7): 1203-5, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21479030

ABSTRACT

We have developed an Ir/Si multilayer for extreme ultraviolet (EUV) applications. Normal incidence reflectance measurements of a prototype film tuned to 30 nm wavelength show superior performance relative to a conventional Mo/Si multilayer structure; we also find good stability over time. Transmission electron microscopy and electron dispersive x-ray spectroscopy have been used to examine the microstructure and interface properties of this system: we find amorphous Si layers and polycrystalline Ir layers, with asymmetric interlayer regions of mixed composition. Potential applications of Ir/Si multilayers include instrumentation for solar physics and laboratory EUV beam manipulation.

11.
Appl Opt ; 48(29): 5432-7, 2009 Oct 10.
Article in English | MEDLINE | ID: mdl-19823222

ABSTRACT

Future solar experiments designed to perform solar plasma diagnostics will also be based on extreme-ultravilet observations. Multilayer (ML) optics are essential in this spectral region since these coatings have high reflectivity at normal incidence. Typically, the reflectivity curve of a ML coating has a small but finite bandwidth, and this can be a serious drawback when several spectral lines fall within the bandwidth. In fact, spectral lines emitted by different ion species can correspond to different plasma conditions. We present the design, realization, and characterization of an innovative ML structure with high reflectivity coupled with a strong rejection ratio for two adjacent spectral features. The key element is an optimized capping layer structure deposited on top of the ML that preserves the performance reflectance at the target wavelength and at the same time suppresses the reflectance at specific adjacent wavelengths. Application to the Fe xv3x10(6) K coronal emission line at 28.4 nm with rejection of the He ii Lyman-alpha line at 30.4 nm is presented.

12.
J Dermatol Sci ; 56(2): 89-98, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19700264

ABSTRACT

BACKGROUND: In vitro measurements of sunscreen products are used to assess their reliability in terms of photoprotection and photo-stability. OBJECTIVE: In this study, several substrates have been fully characterized for in vitro sunscreen testing. METHODS: The following different substrates have been utilised in the study: roughened PMMA plates, Transpore, Vitro-Skin, roughened quartz plate and a laboratory prepared roughened PTFE plate. The suitability of these substrates for SPF evaluation has been investigated by performing total absorbance measurements of seven sunscreen products with different SPF values produced by the same manufacturer. RESULTS AND CONCLUSIONS: Application of sunscreen products on Transpore, roughened quartz plate, PMMA, PTFE and Vitro-Skin was performed efficiently. With regard to photo-stability of the substrate materials, only PMMA plate, PTFE and roughened quartz plate showed to be photo-stable after UV irradiation. With regard to SPF tests, our results indicate that Transpore, roughened quartz plate and Vitro-Skin are preferable to assess SPF values because of a better correlation between in vitro and in vivo measurements. Our study also confirms that an initial calibration must be performed for sunscreen products labelled with different SPF values. Finally, the results of our measurements demonstrate that, although a correlation between in vitro and in vivo SPF results can be established, it is never exactly 1:1.


Subject(s)
Polymethyl Methacrylate/chemistry , Polytetrafluoroethylene/chemistry , Quartz/chemistry , Sunscreening Agents/chemistry , Surgical Tape , Calibration , Materials Testing , Photochemical Processes , Polymethyl Methacrylate/radiation effects , Polytetrafluoroethylene/radiation effects , Quartz/radiation effects , Reproducibility of Results , Spectrophotometry/standards , Surface Properties , Ultraviolet Rays
13.
Opt Express ; 17(10): 7922-32, 2009 May 11.
Article in English | MEDLINE | ID: mdl-19434124

ABSTRACT

The experimental characterization of an aperiodic reflecting multilayer (ML) structure designed to reflect and compress attosecond pulses in the extreme ultraviolet spectral region is presented. The MLs are designed for the 75-105 eV spectral interval with suitable reflectance and phase behavior, in particular high total spectral reflectivity coupled with very wide bandwidth and spectral phase compensation. The experimental phase behavior of the multilayer has been obtained through electron photoemission signal using an innovative method that is presented and discussed in this paper. With this ML we have demonstrated pulse compression by reflection from 450 as to 130 as.

14.
Opt Express ; 16(19): 15228-37, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18795061

ABSTRACT

We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.


Subject(s)
Computer-Aided Design , Membranes, Artificial , Models, Theoretical , Optics and Photonics/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
15.
J Dermatol Sci ; 52(3): 193-204, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18755574

ABSTRACT

BACKGROUND: In vitro sunscreen tests are diffusively used to test both the sun protection factor (SPF) and the photo-stability of filters. Spectrophotometric measurements of the absorbance of ultraviolet radiations through a sunscreen applied on a suitable substrate allow a rapid evaluation of its protection factor both at short and long wavelength ultraviolet radiation (UVB and UVA). OBJECTIVES: The objective of this study has been to demonstrate if Teflon can be adopted as substrate both for SPF evaluation and photo-stability tests. Moreover, we have investigated if there is a correspondence between in vitro SPF measurements and values reported by manufacturers on sunscreens. MATERIAL AND METHODS: Teflon has been used to perform several photo-stability tests by irradiating the filters with different wavebands and analyzing the combined effect of UV and infrared (IR) light. Similar analyses have been carried out using PMMA Plates, which is the standard substrate for UVA in vitro test. RESULTS: We have demonstrated that it is possible to establish a good correspondence between in vitro SPF and values reported by manufacturers on sunscreens. We have also verified that the in vitro/label SPF correlation curve depends on the quantity of product applied while this does not seem to be true for other parameters like Critical Wavelength and UVA ratio. With regard to photo-stability studies, our results indicate for the first time that IR irradiation may have a role on photo-degradation. CONCLUSIONS: The results show that there is a good correlation between the in vitro SPF determined by the present method and the SPF reported by the manufacturer. The compatibility of the results obtained using Teflon and PMMA Plates demonstrates that Teflon can be utilized for both SPF determination and photo-stability tests.


Subject(s)
Sunscreening Agents/pharmacology , Drug Stability , Polymethyl Methacrylate , Polytetrafluoroethylene/chemistry , Radiation Protection , Sunscreening Agents/chemistry , Ultraviolet Rays
16.
Appl Opt ; 47(16): 2906-14, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18516105

ABSTRACT

We have developed novel aperiodic multilayers, covered by capping layers resistant to environmental attack, that offer superior performance for extreme ultraviolet lithography. We have designed these coatings using an optimization procedure based on an algorithm able to acquire domain knowledge inside the space of possible solutions. An integrated intensity increase of up to 2.18 times that obtained using standard periodic multilayers has been estimated. The aperiodic structures have minimal absorption in the topmost layers, which makes them especially insensitive to both the choice of capping layer material and any subsequent capping layer degradation due to oxidation or contamination. This property allows for the use of the most resilient capping layer materials available, thereby leading to a significantly improved lifetime. We have produced prototype capped aperiodic coatings and have measured their performance.

17.
Appl Opt ; 46(33): 8159-69, 2007 Nov 20.
Article in English | MEDLINE | ID: mdl-18026555

ABSTRACT

The design of aperiodic reflecting multilayer (ML) structures for attosecond physics in the extreme ultraviolet spectral region is presented. An optimization procedure based on "evolutive strategy" has been developed in order to get coating structures reflecting high photon fluxes in ultrashort duration pulses. The MLs are designed for a specific (75-105 eV) spectral interval with suitable reflectance and phase characteristics, in particular high total spectral reflectivity coupled with very wide bandwidth, spectral phase compensation, and amplitude reshaping. Furthermore, to take into account manufacturing tolerances, solutions stable with respect to random layer thickness variations are selected. To test the reliability of the proposed design procedure, examples of Mo/Si ML structures designed to reflect ultrashort pulses with different amplitude profiles and phase behavior are considered. The performances of the various structures are analyzed.

18.
Appl Opt ; 46(22): 4977-84, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17676104

ABSTRACT

An innovative sensor with a spectral response equivalent to the erythemal action curve for ultraviolet total effective irradiance measurements is presented. Optical and sensor components have been selected after the characterization of different samples. The design is based on an innovative interferential filter, which has been realized and tested. A first prototype has been assembled and characterized. Our measurements demonstrate the feasibility and potential of this instrument.

19.
Appl Opt ; 45(24): 6119-25, 2006 Aug 20.
Article in English | MEDLINE | ID: mdl-16892112

ABSTRACT

The design of a quasi-null lens system for the fabrication of an aspheric oblate convex ellipsoidal mirror is presented. The Performance and tolerance of the system have been analyzed. The system has been applied successfully for the fabrication of the primary mirror of the Wide Angle Camera (WAC), the imaging system onboard the Rosetta, the European Space Agency cornerstone mission dedicated to the exploration of a comet. The WAC is based on an off-axis two-mirror configuration, in which the primary mirror is an oblate convex ellipsoid with a significant conic constant.

20.
Appl Opt ; 45(9): 1985-92, 2006 Mar 20.
Article in English | MEDLINE | ID: mdl-16579569

ABSTRACT

A Mo-Si multilayer mirror has been used for determination of the ellipticity and higher-order content of a synchrotron beam. The method is based on the angular measure of multilayer reflectivity in the region of Bragg first- and second-order reflections. Beam parameters were derived by a fitting procedure.

SELECTION OF CITATIONS
SEARCH DETAIL
...