Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Res ; 428: 87-99, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27152632

ABSTRACT

Structure-reactivity relationships of Amadori rearrangement products compared to their related ketoses were derived from multiple NMR spectroscopic techniques. Besides structure elucidation of six Amadori rearrangement products derived from d-glucose and d-galactose with l-alanine, l-phenylalanine and l-proline, especially quantitative (13)C selective saturation transfer NMR spectroscopy was applied to deduce information on isomeric systems. It could be shown exemplarily that the Amadori compound N-(1-deoxy-d-fructos-1-yl)-l-proline exhibits much higher isomerisation rates than d-fructose, which can be explained by C-1 substituent mediated intramolecular catalysis. In combination with a reduced carbonyl activity of Amadori compounds compared to their related ketoses which results in an increased acyclic keto isomer concentration, the results on isomerisation dynamics lead to a highly significant increased reactivity of Amadori compounds. This can be clearly seen, comparing approximated carbohydrate milieu stability time constants (ACuSTiC) which is 1 s for N-(1-deoxy-d-fructos-1-yl)-l-proline and 10 s for d-fructose at pD 4.20 ± 0.05 at 350 K. In addition, first NMR spectroscopic data are provided, which prove that α-pyranose of (amino acid substituted) d-fructose adopts both, (2)C5 and (5)C2 conformation.


Subject(s)
Amino Acids/chemistry , Ketoses/chemistry , Monosaccharides/chemistry , Isomerism , Magnetic Resonance Spectroscopy , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...