Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2764: 21-33, 2024.
Article in English | MEDLINE | ID: mdl-38393586

ABSTRACT

Lately, the need for three-dimensional (3D) cell culture has been recognized in order to closely mimic the organization of native tissues. Thus, 3D scaffolds started to be employed to facilitate the 3D cell organization and enable the artificial tissue formation for the emerging tissue engineering applications. 3D scaffolds can be prepared by various techniques, each with certain advantages and disadvantages. Decellularization is an easy method based on removal of cells from native tissue sample, yielding extracellular matrix (ECM) scaffold with preserved architecture and bioactivity. This chapter provides a detailed protocol for decellularization of pig lung and also some basic assays for evaluation of its effectivity, such as determination of DNA content and histological verification of the selected ECM components. Such decellularized scaffold can subsequently be used for various tissue engineering applications, for example, for recellularization with cells of interest, for natural ECM hydrogel preparation, or as a bioink for 3D bioprinting.


Subject(s)
Lung , Tissue Engineering , Tissue Scaffolds , Animals , Extracellular Matrix , Hydrogels , Swine , Tissue Engineering/methods
2.
Part Fibre Toxicol ; 19(1): 52, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922858

ABSTRACT

BACKGROUND: Inhalation of lead oxide nanoparticles (PbO NPs), which are emitted to the environment by high-temperature technological processes, heavily impairs target organs. These nanoparticles pass through the lung barrier and are distributed via the blood into secondary target organs, where they cause numerous pathological alterations. Here, we studied in detail, macrophages as specialized cells involved in the innate and adaptive immune response in selected target organs to unravel their potential involvement in reaction to subchronic PbO NP inhalation. In this context, we also tackled possible alterations in lipid uptake in the lungs and liver, which is usually associated with foam macrophage formation. RESULTS: The histopathological analysis of PbO NP exposed lung revealed serious chronic inflammation of lung tissues. The number of total and foam macrophages was significantly increased in lung, and they contained numerous cholesterol crystals. PbO NP inhalation induced changes in expression of phospholipases C (PLC) as enzymes linked to macrophage-mediated inflammation in lungs. In the liver, the subchronic inhalation of PbO NPs caused predominantly hyperemia, microsteatosis or remodeling of the liver parenchyma, and the number of liver macrophages also significantly was increased. The gene and protein expression of a cholesterol transporter CD36, which is associated with lipid metabolism, was altered in the liver. The amount of selected cholesteryl esters (CE 16:0, CE 18:1, CE 20:4, CE 22:6) in liver tissue was decreased after subchronic PbO NP inhalation, while total and free cholesterol in liver tissue was slightly increased. Gene and protein expression of phospholipase PLCß1 and receptor CD36 in human hepatocytes were affected also in in vitro experiments after acute PbO NP exposure. No microscopic or serious functional kidney alterations were detected after subchronic PbO NP exposure and CD68 positive cells were present in the physiological mode in its interstitial tissues. CONCLUSION: Our study revealed the association of increased cholesterol and lipid storage in targeted tissues with the alteration of scavenger receptors and phospholipases C after subchronic inhalation of PbO NPs and yet uncovered processes, which can contribute to steatosis in liver after metal nanoparticles exposure.


Subject(s)
Metal Nanoparticles , Type C Phospholipases , Cholesterol , Humans , Inflammation , Lead , Macrophages , Metal Nanoparticles/chemistry , Oxides
3.
Sci Rep ; 12(1): 9583, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35688908

ABSTRACT

TACSTD2 encodes a transmembrane glycoprotein Trop2 commonly overexpressed in carcinomas. While the Trop2 protein was discovered already in 1981 and first antibody-drug conjugate targeting Trop2 were recently approved for cancer therapy, the physiological role of Trop2 is still not fully understood. In this article, we show that TACSTD2/Trop2 expression is evolutionarily conserved in lungs of various vertebrates. By analysis of publicly available transcriptomic data we demonstrate that TACSTD2 level consistently increases in lungs infected with miscellaneous, but mainly viral pathogens. Single cell and subpopulation based transcriptomic data revealed that the major source of TACSTD2 transcript are lung epithelial cells and their progenitors and that TACSTD2 is induced directly in lung epithelial cells following infection. Increase in TACSTD2 expression may represent a mechanism to maintain/restore epithelial barrier function and contribute to regeneration process in infected/damaged lungs.


Subject(s)
Antigens, Neoplasm , Cell Adhesion Molecules , Animals , Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/metabolism , Epithelial Cells/metabolism , Lung/metabolism , Up-Regulation
4.
Tissue Eng Regen Med ; 19(5): 1033-1050, 2022 10.
Article in English | MEDLINE | ID: mdl-35670910

ABSTRACT

BACKGROUND: The progenitors to lung airway epithelium that are capable of long-term propagation may represent an attractive source of cells for cell-based therapies, disease modeling, toxicity testing, and others. Principally, there are two main options for obtaining lung epithelial progenitors: (i) direct isolation of endogenous progenitors from human lungs and (ii) in vitro differentiation from some other cell type. The prime candidates for the second approach are pluripotent stem cells, which may provide autologous and/or allogeneic cell resource in clinically relevant quality and quantity. METHODS: By exploiting the differentiation potential of human embryonic stem cells (hESC), here we derived expandable lung epithelium (ELEP) and established culture conditions for their long-term propagation (more than 6 months) in a monolayer culture without a need of 3D culture conditions and/or cell sorting steps, which minimizes potential variability of the outcome. RESULTS: These hESC-derived ELEP express NK2 Homeobox 1 (NKX2.1), a marker of early lung epithelial lineage, display properties of cells in early stages of surfactant production and are able to differentiate to cells exhibitting molecular and morphological characteristics of both respiratory epithelium of airway and alveolar regions. CONCLUSION: Expandable lung epithelium thus offer a stable, convenient, easily scalable and high-yielding cell source for applications in biomedicine.


Subject(s)
Human Embryonic Stem Cells , Cell Differentiation , Epithelium , Humans , Lung/metabolism , Surface-Active Agents/metabolism
5.
ACS Nano ; 14(3): 3096-3120, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32105447

ABSTRACT

Lead oxide nanoparticles (PbONPs), upon their entry into the lungs via inhalation, induce structural changes in primary and secondary target organs. The fate and ultrastructural localization of PbONPs in organs is known to be dependent on the specific organ. Here, we focused on the differences in the ability to clear the inhaled PbONPs from secondary target organs and on molecular and cellular mechanisms contributing to nanoparticle removal. Mice were exposed to PbONPs in whole-body inhalation chambers. Clearance of ionic lead and PbONPs (Pb/PbONPs) from the lungs and liver was very effective, with the lead being almost completely eliminated from the lungs and the physiological state of the lung tissue conspicuously restored. Kidneys exposed to nanoparticles did not exhibit serious signs of damage; however, LA-ICP-MS uncovered a certain amount of lead located preferentially in the kidney cortex even after a clearance period. The concentration of lead in femurs, as representatives of the axial skeleton, was the highest among studied organs at all designated time points after PbONP exposure, and the clearance ability of lead from the femurs was very low in contrast to other organs. The organ-specific increase of ABC transporters expression (ABCG2 in lungs and ABCC3 in the liver) was observed in exposed animals, suggesting their involvement in removing Pb/PbONPs from tissues. Moreover, the expression of caveolins and clathrin displayed a tissue-specific response to lead exposure. Our results uncovered high variability among the organs in their ability to clear Pb/PbONPs and in the transporters involved in this process.


Subject(s)
Lead/metabolism , Membrane Transport Proteins/metabolism , Nanoparticles/metabolism , Oxides/metabolism , Animals , Female , Lead/administration & dosage , Lead/chemistry , Liver/chemistry , Liver/metabolism , Lung/chemistry , Lung/metabolism , Membrane Transport Proteins/chemistry , Mice , Mice, Inbred ICR , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Oxides/administration & dosage , Oxides/chemistry
6.
Stem Cells Dev ; 27(16): 1077-1084, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29882484

ABSTRACT

Chromosomal instability evoked by abnormalities in centrosome numbers has been traditionally considered as a hallmark of aberrant, typically cancerous or senescent cells. We have reported previously that pristine human embryonic stem cells (hESC) suffer from high frequency of supernumerary centrosomes and hence may be prone to undergo abnormal mitotic divisions. We have also unraveled that this phenomenon of multicentrosomal mitoses vanishes with prolonged time in culture and with initiation of differentiation, and it is strongly affected by the culture substratum. In this study, we report for the first time that Cripto-1 protein (teratocarcinoma-derived growth factor 1, epidermal growth factor-Cripto/FRL-1/Cryptic) produced by hESC represents a factor capable of inducing formation of supernumerary centrosomes in cultured hESC. Elimination of Cripto-1 signaling on the other hand restores the normal number of centrosomes in hESC. Linking the secretory phenotype of hESC to the centrosomal metabolism may help to develop better strategies for propagation of stable and safe bioindustrial and clinical grade cultures of hESC. From a broader point of view, it may lead to unravelling Cripto-1 as a micro-environmental factor contributing to adverse cell behaviors in vivo.


Subject(s)
Centrosome , GPI-Linked Proteins/genetics , Human Embryonic Stem Cells/cytology , Intercellular Signaling Peptides and Proteins/genetics , Mitosis/genetics , Neoplasm Proteins/genetics , Cell Differentiation/genetics , GPI-Linked Proteins/antagonists & inhibitors , Human Embryonic Stem Cells/metabolism , Humans , Neoplasm Proteins/antagonists & inhibitors , Signal Transduction/genetics
7.
Haematologica ; 101(6): 707-16, 2016 06.
Article in English | MEDLINE | ID: mdl-27013649

ABSTRACT

GATA-2 deficiency was recently described as common cause of overlapping syndromes of immunodeficiency, lymphedema, familiar myelodysplastic syndrome or acute myeloid leukemia. The aim of our study was to analyze bone marrow and peripheral blood samples of children with myelodysplastic syndrome or aplastic anemia to define prevalence of the GATA2 mutation and to assess whether mutations in GATA-2 transcription factor exhibit specific immunophenotypic features. The prevalence of a GATA2 mutation in a consecutively diagnosed cohort of children was 14% in advanced forms of myelodysplastic syndrome (refractory anemia with excess blasts, refractory anemia with excess blasts in transformation, and myelodysplasia-related acute myeloid leukemia), 17% in refractory cytopenia of childhood, and 0% in aplastic anemia. In GATA-2-deficient cases, we found the most profound B-cell lymphopenia, including its progenitors in blood and bone marrow, which correlated with significantly diminished intronRSS-Kde recombination excision circles in comparison to other myelodysplastic syndrome/aplastic anemia cases. The other typical features of GATA-2 deficiency (monocytopenia and natural killer cell lymphopenia) were less discriminative. In conclusion, we suggest screening for GATA2 mutations in pediatric myelodysplastic syndrome, preferentially in patients with impaired B-cell homeostasis in bone marrow and peripheral blood (low number of progenitors, intronRSS-Kde recombination excision circles and naïve cells).


Subject(s)
B-Lymphocytes/metabolism , GATA2 Transcription Factor/deficiency , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Precursor Cells, B-Lymphoid/metabolism , Adolescent , Anemia, Aplastic/diagnosis , Anemia, Aplastic/etiology , Biomarkers , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Child , Child, Preschool , Diagnosis, Differential , Humans , Immunophenotyping , Infant , Lymphocyte Count , Lymphopenia/diagnosis , Mutation , Myeloid Cells/metabolism , Phenotype , ROC Curve , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Young Adult
8.
Eur Cytokine Netw ; 25(1): 8-13, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24998352

ABSTRACT

Acute lymphoblastic leukemia (ALL) cells depend on the microenvironment of the host in vivo and do not survive in in vitro culture. Conversely, the suppression of non-malignant tissues is one of the leading characteristics of the course of ALL. Both the non-malignant suppression and malignant cell survival may be partly affected by soluble factors within the bone marrow (BM) environment. Here, we aimed to identify proteins in BM plasma of children with ALL that may contribute to ALL aggressiveness and/or the microenvironment-mediated survival of ALL cells. LBMp (leukemic bone marrow plasma) at the time of ALL diagnosis was compared to control plasma of bone marrow (CBMp) or peripheral blood (CPBp) using a cytokine antibody array. The cytokine antibody array enabled simultaneous detection of 79 proteins per sample. Candidate proteins exhibiting significantly different profiles were further analyzed and confirmed by ELISA. mRNA expression of one of the candidate proteins (TIMP1) was studied using quantitative reverse transcriptase polymerase chain reaction (qRTPCR). The cytokine antibody array experiments identified 23 proteins that differed significantly (p<0.05); of these, two proteins (TIMP1 and LIF) withstood the Bonferroni correction. In contrast, little difference was observed between CBMp and CPBp. At the diagnosis of ALL, changes in the soluble microenvironment are detectable in BM plasma. These changes probably participate in the pathogenesis and/or result from the changes in the cell composition.


Subject(s)
Bone Marrow/metabolism , Cytokines/blood , Leukemia Inhibitory Factor/biosynthesis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood , Tissue Inhibitor of Metalloproteinase-1/blood , Biomarkers, Tumor/blood , Cell Survival , Child , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Array Analysis , RNA, Messenger/biosynthesis , Tissue Inhibitor of Metalloproteinase-1/biosynthesis
9.
Biol Chem ; 390(1): 49-58, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19007308

ABSTRACT

The Bcl-2 protein is one of the key components of biochemical pathways controlling programmed cell death. The function of this protein can be regulated by posttranslational modifications. Phosphorylation of Bcl-2 has been considered to be significantly associated with cell cycle arrest in the G2/M phase of the cell cycle, and with cell death caused by defects of microtubule dynamics. This study shows that phosphorylation of Bcl-2 can be induced by heavy metals due to activation of the Jun N-terminal kinase pathway that is not linked to the G2/M cell cycle arrest. Furthermore, we demonstrate that hyperphosphorylated Bcl-2 protein is a more potent inhibitor of zinc-induced cell death than its hypophosphorylated mutant form. These data suggest that regulation of Bcl-2 protein function by phosphorylation is an important part of cell responses to stress.


Subject(s)
JNK Mitogen-Activated Protein Kinases/metabolism , Metals, Heavy/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Electrophoresis , Gene Expression Regulation, Neoplastic/drug effects , Humans , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Signal Transduction/drug effects , Stress, Physiological/drug effects , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...