Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(37): 14150-14155, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36047681

ABSTRACT

Syntheses of Rh complexes of the phosphine-amido-silane SiNP ligand are reported. The reaction of the parent (SiNP)H ligand (4) with 0.5 equiv. [(COE)RhCl]2 (COE = cis-cyclooctene) in the presence of NaN(SiME3)2 resulted in the formation of (SiNP)Rh(COE) (5). Compound 5 was converted to a series of (SiNP)Rh(P(OR)3) complexes 6-10 (R = Ph, iPr, nBu, Et, or Me) by treatment with the corresponding phosphite. NMR and XRD structural data, as well as the DFT computational analysis indicate that compounds 5-10 are divided into two structural Types (A and B), differing in the nature of the interaction of the Si-H bond of the SiNP ligand with Rh.

2.
Chem Commun (Camb) ; 53(48): 6456-6459, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28560363

ABSTRACT

While investigating rhodium-catalyzed Negishi coupling, it was observed that the (PNP)Rh fragment readily inserted into zinc-carbon bonds to form isolable molecules with covalent rhodium-zinc bonds.

3.
Chem Sci ; 8(4): 3178-3186, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28507693

ABSTRACT

The manuscript reports the synthesis, characterization, and analysis of electronic structure in a series of complexes of small perfluorocarbon ligands with the (PNP)Rh fragment (where PNP is a diarylamido/bis(phosphine) pincer ligand). Reactions of (PNP)Rh(TBE) as the source of (PNP)Rh with CHF3 and C2HF5 produced perfluoroalkylidene complexes (PNP)Rh[double bond, length as m-dash]CF2 and (PNP)Rh[double bond, length as m-dash]C(F)(CF3). (PNP)Rh[double bond, length as m-dash]CF2 could also be obtained via the reaction of (PNP)Rh(TBE) with Me3SiCF3/CsF, with an admixture of (PNP)Rh(C2F4), where TBE = tert-butylethylene. Abstraction of fluoride from these neutral (PNP)RhC x F y complexes was successful, although only abstraction from (PNP)Rh[double bond, length as m-dash]CF2 allowed unambiguous identification of the Rh product, [(PNP)Rh[triple bond, length as m-dash]CF]+. DFT computational studies allowed comparison of relative energies of (PNP)Rh(C2F4) and [(PNP)Rh(C2F3)]+ isomers as well as comparisons between the electronic structure of the [double bond, length as m-dash]CF2, C2F4, and [triple bond, length as m-dash]CF+ complexes and their hydrocarbon analogues.

4.
Chem Sci ; 6(11): 6572-6582, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-30090274

ABSTRACT

Following the report on the successful use of SiNN pincer complexes of iridium as catalysts for dehydrogenative borylation of terminal alkynes (DHBTA) to alkynylboronates, this work examined a wide variety of related pincer ligands in the supporting role in DHBTA. The ligand selection included both new and previously reported ligands and was developed to explore systematic changes to the SiNN framework (the 8-(2-diisopropylsilylphenyl)aminoquinoline). Surprisingly, only the diarylamido/bis(phosphine) PNP system showed any DHBTA reactivity. The specific PNP ligand (bearing two diisopropylphosphino side donors) used in the screen showed DHBTA activity inferior to SiNN. However, taking advantage of the ligand optimization opportunities presented by the PNP system via the changes in the substitution at phosphorus led to the discovery of a catalyst whose activity, longevity, and scope far exceeded that of the original SiNN archetype. Several Ir complexes were prepared in a model PNP system and evaluated as potential intermediates in the catalytic cycle. Among them, the (PNP)Ir diboryl complex and the borylvinylidene complex were shown to be less competent in catalysis and thus likely not part of the catalytic cycle.

6.
J Am Chem Soc ; 136(42): 14772-9, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25260114

ABSTRACT

This article describes a well-defined pincer-Rh catalyst for C-S cross-coupling reactions. (POCOP)Rh(H)(Cl) serves as an active precatalyst for the coupling of aryl chlorides and bromides with aryl and alkyl thiols under reasonable conditions (3% mol cat., 110 °C, 2-24 h, >90% yield). For select substrates, >90% yields were obtained with catalyst loading as low as 0.1%. Key mechanistic intermediates have been isolated and fully characterized, including (POCOP)Rh(Ph)(SPh) (6a) and (POCOP)Rh(SPh2) (6b). The aryl/bis(phosphinite) (POCOP)Rh system has been shown to favor aryl thiolate reductive elimination at elevated temperatures and in some cases at room temperature, compared with the analogous diarylamido/bis(phosphine) (PNP)Rh pincer system. Concerted reductive elimination has been studied with 6a directly and in the presence of aryl bromide and aryl chloride traps. This investigation demonstrates a clear rate dependence on aryl chloride concentration during catalysis, a dependence that is absent when using aryl bromides. The rate of catalysis is dramatically reduced or brought to zero for ortho-tolyl halides, which can be traced to slower C-S coupling and slower carbon-halogen oxidative addition for ortho-substituted aryls. The influence of the sterics in the thiol component is less straightforward. The S-H oxidative addition product (POCOP)Rh(H)(SPh) (16) has been fully characterized and its reactivity has been examined, resulting in the isolation of the sodium-thiolate adduct (POCOP)Rh(NaSPh) (19). The solid-state structure of 19 shows Na interactions not only with sulfur, but also with a neighboring Rh and the chelating aryl carbon of the pincer framework. The reactivity of 16 and 19 indicates that these potential side products should not hinder catalysis.


Subject(s)
Benzene/chemistry , Coordination Complexes/chemistry , Halogens/chemistry , Rhodium/chemistry , Sulfhydryl Compounds/chemistry , Catalysis , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...