Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nat Commun ; 14(1): 7764, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012137

ABSTRACT

Understanding the development of humoral immune responses of children and adolescents to SARS-CoV-2 is essential for designing effective public health measures. Here we examine the changes of humoral immune response in school-aged children and adolescents during the COVID-19 pandemic (June 2020 to July 2022), with a specific interest in the Omicron variant (beginning of 2022). In our study "Ciao Corona", we assess in each of the five testing rounds between 1874 and 2500 children and adolescents from 55 schools in the canton of Zurich with a particular focus on a longitudinal cohort (n=751). By July 2022, 96.9% (95% credible interval 95.3-98.1%) of children and adolescents have SARS-CoV-2 anti-spike IgG (S-IgG) antibodies. Those with hybrid immunity or vaccination have higher S-IgG titres and stronger neutralising responses against Wildtype, Delta and Omicron BA.1 variants compared to those infected but unvaccinated. S-IgG persist over 18 months in 93% of children and adolescents. During the study period one adolescent was hospitalised for less than 24 hours possibly related to an acute SARS-CoV-2 infection. These findings show that the Omicron wave and the rollout of vaccines boosted S-IgG titres and neutralising capacity. Trial registration number: NCT04448717. https://clinicaltrials.gov/ct2/show/NCT04448717 .


Subject(s)
COVID-19 , Child , Humans , Adolescent , COVID-19/epidemiology , Immunity, Humoral , SARS-CoV-2 , Cohort Studies , Pandemics , Prospective Studies , Antibodies, Viral , Immunoglobulin G , Antibodies, Neutralizing
2.
Int J Epidemiol ; 52(6): 1696-1707, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-37407273

ABSTRACT

BACKGROUND: Seroprevalence and the proportion of people with neutralizing activity (functional immunity) against SARS-CoV-2 variants were high in early 2022. In this prospective, population- based, multi-region cohort study, we assessed the development of functional and hybrid immunity (induced by vaccination and infection) in the general population during this period of high incidence of infections with Omicron variants. METHODS: We randomly selected and assessed individuals aged ≥16 years from the general population in southern (n = 739) and north-eastern (n = 964) Switzerland in March 2022. We assessed them again in June/July 2022, supplemented with a random sample from western (n = 850) Switzerland. We measured SARS-CoV-2 specific IgG antibodies and SARS-CoV-2 neutralizing antibodies against three variants (ancestral strain, Delta, Omicron). RESULTS: Seroprevalence remained stable from March 2022 (97.6%, n = 1894) to June/July 2022 (98.4%, n = 2553). In June/July, the percentage of individuals with neutralizing capacity against ancestral strain was 94.2%, against Delta 90.8% and against Omicron 84.9%, and 50.6% developed hybrid immunity. Individuals with hybrid immunity had highest median levels of anti-spike IgG antibodies titres [4518 World Health Organization units per millilitre (WHO U/mL)] compared with those with only vaccine- (4304 WHO U/mL) or infection- (269 WHO U/mL) induced immunity, and highest neutralization capacity against ancestral strain (hybrid: 99.8%, vaccinated: 98%, infected: 47.5%), Delta (hybrid: 99%, vaccinated: 92.2%, infected: 38.7%) and Omicron (hybrid: 96.4%, vaccinated: 79.5%, infected: 47.5%). CONCLUSIONS: This first study on functional and hybrid immunity in the Swiss general population after Omicron waves showed that SARS-CoV-2 has become endemic. The high levels of antibodies and neutralization support the emerging recommendations of some countries where booster vaccinations are still strongly recommended for vulnerable persons but less so for the general population.


Subject(s)
Adaptive Immunity , Antibodies, Viral , Humans , Cohort Studies , Incidence , Prospective Studies , Seroepidemiologic Studies , Immunoglobulin G , Vaccination
3.
Clin Nutr ; 42(6): 972-986, 2023 06.
Article in English | MEDLINE | ID: mdl-37130500

ABSTRACT

INTRODUCTION: Some micronutrients have key roles in immune defence, including mucosal defence mechanisms and immunoglobulin production. Altered micronutrient status has been linked with COVID-19 infection and disease severity. We assessed the associations of selected circulating micronutrients with anti-SARS-CoV-2 IgG and IgA seropositivity in the Swiss community using early pandemic data. METHODS: Case-control study comparing the first PCR-confirmed COVID-19 symptomatic cases in the Vaud Canton (May to June 2020, n = 199) and controls (random population sample, n = 447), seronegative for IgG and IgA. The replication analysis included seropositive (n = 134) and seronegative (n = 152) close contacts from confirmed COVID-19 cases. Anti-SARS-CoV-2 IgG and IgA levels against the native trimeric spike protein were measured using the Luminex immunoassay. We measured plasma Zn, Se and Cu concentrations by ICP-MS, and 25-hydroxy-vitamin D3 (25(OH)D3) with LC-MS/MS and explored associations using multiple logistic regression. RESULTS: The 932 participants (54.1% women) were aged 48.6 ± 20.2 years (±SD), BMI 25.0 ± 4.7 kg/m2 with median C-Reactive Protein 1 mg/l. In logistic regressions, log2(Zn) plasma levels were negatively associated with IgG seropositivity (OR [95% CI]: 0.196 [0.0831; 0.465], P < 0.001; replication analyses: 0.294 [0.0893; 0.968], P < 0.05). Results were similar for IgA. We found no association of Cu, Se, and 25(OH)D3 with anti-SARS-CoV-2 IgG or IgA seropositivity. CONCLUSION: Low plasma Zn levels were associated with higher anti-SARS-CoV-2 IgG and IgA seropositivity in a Swiss population when the initial viral variant was circulating, and no vaccination available. These results suggest that adequate Zn status may play an important role in protecting the general population against SARS-CoV-2 infection. REGISTRY: CORONA IMMUNITAS:: ISRCTN18181860.


Subject(s)
COVID-19 , Humans , Female , Male , Case-Control Studies , Chromatography, Liquid , COVID-19/epidemiology , SARS-CoV-2 , Tandem Mass Spectrometry , Antibodies, Viral , Immunoglobulin G , Micronutrients , Zinc , Immunoglobulin A
4.
Microbes Infect ; 25(1-2): 105077, 2023.
Article in English | MEDLINE | ID: mdl-36400331

ABSTRACT

Between March 2021 and February 2022, SARS-CoV-2 neutralizing antibodies dynamics was investigated in a prospective observational study in 903 healthcare workers of a hospital in Switzerland. A surrogate neutralization assay measuring the competitive inhibition of the angiotensin converting enzyme 2 (ACE2) binding to the spike protein (S) of the SARS-CoV-2 wild type virus and to five variants of concern (Alpha, Beta, Gamma, Delta, Omicron) was used. We observed a broad distribution of neutralization activity among participants and substantial differences in neutralizing titers against variants. Participants were grouped based on combinations of vaccination status (1, 2 or 3 doses) and/or prior or subsequent SARS-CoV-2 infection/reinfection. Triple vaccination resulted in the highest neutralization response, as did double vaccination with prior or subsequent infection. Double vaccination without infection showed an intermediate neutralization response while SARS-CoV-2 infection in non-vaccinated participants resulted in poor neutralization response. After triple vaccination or double vaccination plus infection, additional vaccination and/or reinfection had no impact on neutralizing antibody titers over the observed period. These results strongly support the booster dose strategy, while additional booster doses within short time intervals might not improve immunization. However, dynamics of neutralizing antibodies titers needs to be monitored individually, over time and include newly emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Reinfection , COVID-19/prevention & control , Health Personnel , Hospitals , Vaccination , Antibodies, Neutralizing , Antibodies, Viral
5.
Viruses ; 14(12)2022 11 28.
Article in English | MEDLINE | ID: mdl-36560669

ABSTRACT

A better understanding of the immunological markers associated with long-lasting immune responses to SARS-CoV-2 infection is of paramount importance. In the present study, we characterized SARS-CoV-2-specific humoral responses in hospitalized (ICU and non-ICU) and non-hospitalized individuals at six months post-onset of symptoms (POS) (N = 95). We showed that the proportion of individuals with detectable anti-SARS-CoV-2 IgG or neutralizing (NAb) responses and the titers of antibodies were significantly reduced in non-hospitalized individuals, compared to ICU- or non-ICU-hospitalized individuals at 6 months POS. Interestingly, SARS-CoV-2-specific memory B cells persist at 6 months POS in both ICU and non-ICU patients and were enriched in cells harboring an activated and/or exhausted phenotype. The frequency/phenotype of SARS-CoV-2-specific memory B cells and the magnitude of IgG or NAb responses at 6 months POS correlated with the serum immune signature detected at patient admission. In particular, the serum levels of CXCL13, IL-1RA, and G-CSF directly correlated with the frequency of Spike-specific B cells and the magnitude of Spike-specific IgG or NAb, while the serum levels of CXCL12 showed an antagonizing effect. Our results indicate that the balance between CXCL12 and CXCL13 is an early marker associated with the magnitude and the quality of the SARS-CoV-2 humoral memory.


Subject(s)
COVID-19 , Chemokine CXCL12 , Chemokine CXCL13 , Cytokines , Immunity, Humoral , Humans , Antibodies, Neutralizing , Antibodies, Viral , Chemokine CXCL12/blood , Chemokine CXCL13/blood , COVID-19/immunology , Cytokines/blood , Immunoglobulin G , SARS-CoV-2
6.
Front Med (Lausanne) ; 9: 978764, 2022.
Article in English | MEDLINE | ID: mdl-36072955

ABSTRACT

Immunocompromised patients have a high risk of death from SARS-CoV-2 infection. Vaccination with an mRNA vaccine may protect these patients against severe COVID-19. Several studies have evaluated the impact of immune-suppressive drug regimens on cellular and humoral responses to SARS-CoV-2 variants of concern in this context. We performed a prospective longitudinal study assessing specific humoral (binding and neutralizing antibodies against spike (S) and T-lymphocyte (cytokine secretion and polyfunctionality) immune responses to anti-COVID-19 vaccination with at least two doses of BNT162b2 mRNA vaccine in stable kidney transplant recipients (KTR) on calcineurin inhibitor (CNI)- or belatacept-based treatment regimens. Fifty-two KTR-31 receiving CNI and 21 receiving belatacept-were enrolled in this study. After two doses of vaccine, 46.9% of patients developed anti-S IgG. Anti-spike IgG antibodies were produced in only 21.4% of the patients in the belatacept group, vs. 83.3% of those in the CNI group. The Beta and Delta variants and, more importantly, the Omicron variant, were less well neutralized than the Wuhan strain. T-cell functions were also much weaker in the belatacept group than in the CNI group. Renal transplant patients have an impaired humoral response to BNT162b2 vaccination. Belatacept-based regimens severely weaken both humoral and cellular vaccine responses. Clinically, careful evaluations of at least binding IgG responses, and prophylactic or post-exposure strategies are strongly recommended for transplant recipients on belatacept-based regimens.

7.
Euro Surveill ; 27(31)2022 08.
Article in English | MEDLINE | ID: mdl-35929427

ABSTRACT

Functional immunity (defined here as serum neutralising capacity) critically contributes to conferring protection against SARS-CoV-2 infection and severe COVID-19. This cross-sectional analysis of a prospective, population-based cohort study included 1,894 randomly-selected 16 to 99-year-old participants from two Swiss cantons in March 2022. Of these, 97.6% (95% CI: 96.8-98.2%) had anti-spike IgG antibodies, and neutralising capacity was respectively observed for 94%, 92% and 88% against wild-type SARS-CoV-2, Delta and Omicron variants. Studying functional immunity to inform and monitor vaccination campaigns is crucial.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Cross-Sectional Studies , Humans , Immunization Programs , Immunization, Secondary , Middle Aged , Prospective Studies , Spike Glycoprotein, Coronavirus/immunology , Switzerland/epidemiology , Young Adult
8.
Nat Commun ; 13(1): 4855, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982045

ABSTRACT

To better understand the development of SARS-CoV-2-specific immunity over time, a detailed evaluation of humoral and cellular responses is required. Here, we characterize anti-Spike (S) IgA and IgG in a representative population-based cohort of 431 SARS-CoV-2-infected individuals up to 217 days after diagnosis, demonstrating that 85% develop and maintain anti-S responses. In a subsample of 64 participants, we further assess anti-Nucleocapsid (N) IgG, neutralizing antibody activity, and T cell responses to Membrane (M), N, and S proteins. In contrast to S-specific antibody responses, anti-N IgG levels decline substantially over time and neutralizing activity toward Delta and Omicron variants is low to non-existent within just weeks of Wildtype SARS-CoV-2 infection. Virus-specific T cells are detectable in most participants, albeit more variable than antibody responses. Cluster analyses of the co-evolution of antibody and T cell responses within individuals identify five distinct trajectories characterized by specific immune patterns and clinical factors. These findings demonstrate the relevant heterogeneity in humoral and cellular immunity to SARS-CoV-2 while also identifying consistent patterns where antibody and T cell responses may work in a compensatory manner to provide protection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G , Spike Glycoprotein, Coronavirus
9.
Nat Microbiol ; 7(9): 1376-1389, 2022 09.
Article in English | MEDLINE | ID: mdl-35879526

ABSTRACT

The SARS-CoV-2 Omicron variant has very high levels of transmission, is resistant to neutralization by authorized therapeutic human monoclonal antibodies (mAb) and is less sensitive to vaccine-mediated immunity. To provide additional therapies against Omicron, we isolated a mAb named P2G3 from a previously infected vaccinated donor and showed that it has picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other variants tested. We solved the structure of P2G3 Fab in complex with the Omicron spike using cryo-electron microscopy at 3.04 Å resolution to identify the P2G3 epitope as a Class 3 mAb that is different from mAb-binding spike epitopes reported previously. Using a SARS-CoV-2 Omicron monkey challenge model, we show that P2G3 alone, or in combination with P5C3 (a broadly active Class 1 mAb previously identified), confers complete prophylactic or therapeutic protection. Although we could select for SARS-CoV-2 mutants escaping neutralization by P2G3 or by P5C3 in vitro, they had low infectivity and 'escape' mutations are extremely rare in public sequence databases. We conclude that this combination of mAbs has potential as an anti-Omicron drug.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Viral , Cryoelectron Microscopy , Epitopes , Haplorhini , Humans , Membrane Glycoproteins , Neutralization Tests , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
10.
JAMA Oncol ; 8(5): e220446, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35271706

ABSTRACT

Importance: There are limited comparative data on the durability of neutralizing antibody (nAb) responses elicited by messenger RNA (mRNA) vaccines against the SARS-CoV-2 variants of concern (VOCs) in immunocompromised patients and healthy controls. Objective: To assess the humoral responses after vaccination with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccines. Design, Setting, and Participants: In this prospective, longitudinal monocentric comparative effectiveness study conducted at the Lausanne University Hospital, binding IgG anti-spike antibody and nAb levels were measured at 1 week, 1 month, 3 months, and 6 months after vaccination with mRNA-1273 (24.6% of participants) or BNT162b2 (75.3% of participants). Interventions: All participants received 2 doses of either mRNA-1273 or BNT162b2 vaccines 4 to 6 weeks apart. Main Outcomes and Measures: The primary outcome of the study was the persistence of nAb responses against the original, nonvariant SARS-CoV-2 (2019-nCoV) and different VOCs at 6 months after vaccination. Key secondary outcomes were associations of the type of mRNA vaccine, the underlying disease, and the treatment with the response to vaccination. Results: Among the 841 participants enrolled between January 14 and August 8, 2021, the patient population comprised 637 participants (mean [SD] age, 61.8 [13.7] years; 386 [60.6%] female), and the healthy control population comprised 204 participants (mean [SD] age, 45.9 [12.0] years; 144 [70.6%] female). There were 399 patients with solid cancers, 101 with hematologic cancers, 38 with solid organ transplants, 99 with autoimmune diseases, and 204 healthy controls. More than 15 000 nAb determinations were performed against the original, nonvariant 2019-nCoV and the Alpha, Beta, Gamma, and Delta variants. The proportions of nAbs and their titers decreased in all study groups at 6 months after vaccination, with the greatest decreases for the Beta and Delta variants. For Beta, the proportion decreased to a median (SE) of 39.2% (5.5%) in those with hematologic cancers, 44.8% (2.7%) in those with solid cancers, 23.1% (8.3%) in those with solid organ transplants, and 22.7% (4.8%) in those with autoimmune diseases compared with 52.1% (4.2%) in healthy controls. For Delta, the proportions decreased to 41.8% (5.6%) in participants with hematologic cancer, 51.9% (2.7%) in those with solid cancers, 26.9% (8.7%) in those with solid organ transplants, and 30.7% (5.3%) in those with autoimmune diseases compared with 56.9% (4.1%) healthy controls. Neutralizing antibody titers decreased 3.5- to 5-fold between month 1 and month 6, and the estimated duration of response was greater and more durable among those participants vaccinated with mRNA-1273. In participants with solid cancers, the estimated duration of nAbs against the Beta variant was 221 days with mRNA-1273 and 146 days with BNT162b2, and against the Delta variant, it was 226 days with mRNA-1273 and 161 with BNT162b2. The estimated duration of nAbs in participants with hematologic cancers was 113 and 127 days against Beta and Delta variants, respectively. Conclusions and Relevance: This comparative effectiveness study suggests that approximately half of patients with hematologic cancers and solid cancers, about 70% of patients with solid organ transplants or autoimmune diseases, and 40% of healthy controls have lost nAbs against the circulating VOCs at 6 months after vaccination. These findings may be helpful for developing the best boosting vaccination schedule especially in immunocompromised patients.


Subject(s)
Autoimmune Diseases , COVID-19 , Hematologic Neoplasms , Neoplasms , Aged , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Immunocompromised Host , Immunoglobulin G , Male , Middle Aged , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
11.
Cell Rep ; 37(2): 109814, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34599871

ABSTRACT

Control of the ongoing SARS-CoV-2 pandemic is endangered by the emergence of viral variants with increased transmission efficiency, resistance to marketed therapeutic antibodies, and reduced sensitivity to vaccine-induced immunity. Here, we screen B cells from COVID-19 donors and identify P5C3, a highly potent and broadly neutralizing monoclonal antibody with picomolar neutralizing activity against all SARS-CoV-2 variants of concern (VOCs) identified to date. Structural characterization of P5C3 Fab in complex with the spike demonstrates a neutralizing activity defined by a large buried surface area, highly overlapping with the receptor-binding domain (RBD) surface necessary for ACE2 interaction. We further demonstrate that P5C3 shows complete prophylactic protection in the SARS-CoV-2-infected hamster challenge model. These results indicate that P5C3 opens exciting perspectives either as a prophylactic agent in immunocompromised individuals with poor response to vaccination or as combination therapy in SARS-CoV-2-infected individuals.


Subject(s)
Broadly Neutralizing Antibodies/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Cell Line , Cricetinae , Disease Models, Animal , Epitopes/immunology , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Neutralization Tests , Protein Binding/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/ultrastructure , Structure-Activity Relationship , Vaccination
12.
Sci Transl Med ; 13(605)2021 08 04.
Article in English | MEDLINE | ID: mdl-34257144

ABSTRACT

The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies in the serum of an individual indicates previous infection or vaccination. However, it provides limited insight into the protective nature of this immune response. Neutralizing antibodies recognizing the viral spike protein are more revealing, yet their measurement traditionally requires virus- and cell-based systems that are costly, time-consuming, inflexible, and potentially biohazardous. Here, we present a cell-free quantitative neutralization assay based on the competitive inhibition of trimeric SARS-CoV-2 spike protein binding to the angiotensin-converting enzyme 2 (ACE2) receptor. This high-throughput method matches the performance of the gold standard live virus infection assay, as verified with a panel of 206 seropositive donors with varying degrees of infection severity and virus-specific immunoglobulin G titers, achieving 96.7% sensitivity and 100% specificity. Furthermore, it allows for the parallel assessment of neutralizing activities against multiple SARS-CoV-2 spike protein variants of concern. We used our assay to profile serum samples from 59 patients hospitalized with coronavirus disease 2019 (COVID-19). We found that although most sera had high activity against the 2019-nCoV parental spike protein and, to a lesser extent, the α (B.1.1.7) variant, only 58% of serum samples could efficiently neutralize a spike protein derivative containing mutations present in the ß (B.1.351) variant. Thus, we have developed an assay that can evaluate effective neutralizing antibody responses to SARS-CoV-2 spike protein variants of concern after natural infection and that can be applied to characterize vaccine-induced antibody responses or to assess the potency of monoclonal antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Neutralization Tests , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
13.
Front Immunol ; 12: 613502, 2021.
Article in English | MEDLINE | ID: mdl-33968017

ABSTRACT

In these times of COVID-19 pandemic, concern has been raised about the potential effects of SARS-CoV-2 infection on immunocompromised patients, particularly on those receiving B-cell depleting agents and having therefore a severely depressed humoral response. Convalescent plasma can be a therapeutic option for these patients. Understanding the underlying mechanisms of convalescent plasma is crucial to optimize such therapeutic approach. Here, we describe a COVID-19 patient who was deeply immunosuppressed following rituximab (anti-CD20 monoclonal antibody) and concomitant chemotherapy for chronic lymphoid leukemia. His long-term severe T and B cell lymphopenia allowed to evaluate the treatment effects of convalescent plasma. Therapeutic outcome was monitored at the clinical, biological and radiological level. Moreover, anti-SARS-CoV-2 antibody titers (IgM, IgG and IgA) and neutralizing activity were assessed over time before and after plasma transfusions, alongside to SARS-CoV-2 RNA quantification and virus isolation from the upper respiratory tract. Already after the first cycle of plasma transfusion, the patient experienced rapid improvement of pneumonia, inflammation and blood cell counts, which may be related to the immunomodulatory properties of plasma. Subsequently, the cumulative increase in anti-SARS-CoV-2 neutralizing antibodies due to the three additional plasma transfusions was associated with progressive and finally complete viral clearance, resulting in full clinical recovery. In this case-report, administration of convalescent plasma revealed a stepwise effect with an initial and rapid anti-inflammatory activity followed by the progressive SARS-CoV-2 clearance. These data have potential implications for a more extended use of convalescent plasma and future monoclonal antibodies in the treatment of immunosuppressed COVID-19 patients.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Drug Treatment , COVID-19/immunology , COVID-19/therapy , Aged , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Bendamustine Hydrochloride/therapeutic use , Diabetes Mellitus, Type 2/complications , Humans , Immunization, Passive/methods , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Immunosuppression Therapy , Leukemia, Lymphoid/complications , Leukemia, Lymphoid/drug therapy , Male , Rituximab/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Treatment Outcome , COVID-19 Serotherapy
14.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33144321

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody responses to the spike (S) protein monomer, S protein native trimeric form, or the nucleocapsid (N) proteins were evaluated in cohorts of individuals with acute infection (n = 93) and in individuals enrolled in a postinfection seroprevalence population study (n = 578) in Switzerland. Commercial assays specific for the S1 monomer, for the N protein, or within a newly developed Luminex assay using the S protein trimer were found to be equally sensitive in antibody detection in the acute-infection-phase samples. Interestingly, compared to anti-S antibody responses, those against the N protein appear to wane in the postinfection cohort. Seroprevalence in a "positive patient contacts" group (n = 177) was underestimated by N protein assays by 10.9 to 32.2%, while the "randomly selected" general population group (n = 311) was reduced by up to 45% relative to the S protein assays. The overall reduction in seroprevalence targeting only anti-N antibodies for the total cohort ranged from 9.4 to 31%. Of note, the use of the S protein in its native trimer form was significantly more sensitive compared to monomeric S proteins. These results indicate that the assessment of anti-S IgG antibody responses against the native trimeric S protein should be implemented to estimate SARS-CoV-2 infections in population-based seroprevalence studies.IMPORTANCE In the present study, we have determined SARS-CoV-2-specific antibody responses in sera of acute and postinfection phase subjects. Our results indicate that antibody responses against viral S and N proteins were equally sensitive in the acute phase of infection, but that responses against N appear to wane in the postinfection phase where those against the S protein persist over time. The most sensitive serological assay in both acute and postinfection phases used the native S protein trimer as the binding antigen, which has significantly greater conformational epitopes for antibody binding compared to the S1 monomer protein used in other assays. We believe these results are extremely important in order to generate correct estimates of SARS-CoV-2 infections in the general population. Furthermore, the assessment of antibody responses against the trimeric S protein will be critical to evaluate the durability of the antibody response and for the characterization of a vaccine-induced antibody response.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/blood , COVID-19/epidemiology , Female , Humans , Immunoassay , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Phosphoproteins/immunology , Protein Multimerization , Sensitivity and Specificity , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/chemistry , Switzerland/epidemiology , Time Factors
15.
J Exp Med ; 216(7): 1525-1541, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31123083

ABSTRACT

Classical antagonistic antibodies (Abs) targeting PD-1, such as pembrolizumab and nivolumab, act through blockade of the PD-1-PDL-1 interaction. Here, we have identified novel antagonistic anti-PD-1 Abs not blocking the PD-1-PDL-1 interaction. The nonblocking Abs recognize epitopes on PD-1 located on the opposing face of the PDL-1 interaction and overlap with a newly identified evolutionarily conserved patch. These nonblocking Abs act predominantly through the CD28 coreceptor. Importantly, a combination of blocking and nonblocking Abs synergize in the functional recovery of antigen-specific exhausted CD8 T cells. Interestingly, nonblocking anti-PD-1 Abs have equivalent antitumor activity compared with blocker Abs in two mouse tumor models, and combination therapy using both classes of Abs enhanced tumor suppression in the mouse immunogenic tumor model. The identification of the novel nonblocker anti-PD-1 Abs and their synergy with classical blocker Abs may be instrumental in potentiating immunotherapy strategies and antitumor activity.


Subject(s)
Antineoplastic Agents, Immunological/immunology , CD28 Antigens/metabolism , Neoplasms, Experimental/immunology , Programmed Cell Death 1 Receptor/immunology , Animals , Antineoplastic Agents, Immunological/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Epitopes/immunology , Humans , Jurkat Cells , Mice , NF-kappa B/metabolism , Neoplasms, Experimental/therapy , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
16.
PLoS Pathog ; 10(9): e1004380, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25255144

ABSTRACT

Expression of co-inhibitory molecules is generally associated with T-cell dysfunction in chronic viral infections such as HIV or HCV. However, their relative contribution in the T-cell impairment remains unclear. In the present study, we have evaluated the impact of the expression of co-inhibitory molecules such as 2B4, PD-1 and CD160 on the functions of CD8 T-cells specific to influenza, EBV and CMV. We show that CD8 T-cell populations expressing CD160, but not PD-1, had reduced proliferation capacity and perforin expression, thus indicating that the functional impairment in CD160(+) CD8 T cells may be independent of PD-1 expression. The blockade of CD160/CD160-ligand interaction restored CD8 T-cell proliferation capacity, and the extent of restoration directly correlated with the ex vivo proportion of CD160(+) CD8 T cells suggesting that CD160 negatively regulates TCR-mediated signaling. Furthermore, CD160 expression was not up-regulated upon T-cell activation or proliferation as compared to PD-1. Taken together, these results provide evidence that CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression.


Subject(s)
Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Epstein-Barr Virus Infections/immunology , Hepatitis C/immunology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Blotting, Western , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cytomegalovirus/physiology , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/virology , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Flow Cytometry , GPI-Linked Proteins/metabolism , Hepacivirus/physiology , Hepatitis C/metabolism , Hepatitis C/virology , Herpesvirus 4, Human/physiology , Humans , Lymphocyte Activation
17.
J Exp Med ; 211(10): 2033-45, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25225461

ABSTRACT

In the present study, we have investigated the functional profile of CD4 T cells from patients with common variable immunodeficiency (CVID), including production of cytokines and proliferation in response to bacteria and virus-derived antigens. We show that the functional impairment of CD4 T cells, including the reduced capacity to proliferate and to produce IFN-γ and IL-2, was restricted to bacteria-specific and not virus-specific CD4 T cells. High levels of endotoxins were found in the plasma of patients with CVID, suggesting that CD4 T cell dysfunction might be caused by bacterial translocation. Of note, endotoxemia was associated with significantly higher expression of programmed death 1 (PD-1) on CD4 T cells. The blockade of the PD-1-PD-L1/2 axis in vitro restored CD4 T cell proliferation capacity, thus indicating that PD-1 signaling negatively regulates CD4 T cell functions. Finally, we showed that intravenous immunoglobulin G (IVIG) treatment significantly reduced endotoxemia and the percentage of PD-1(+) CD4 T cells, and restored bacteria-specific CD4 T cell cytokine production and proliferation. In conclusion, the present study demonstrates that the CD4 T cell exhaustion and functional impairment observed in CVID patients is associated with bacterial translocation and that IVIG treatment resolves bacterial translocation and restores CD4 T cell functions.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Common Variable Immunodeficiency/immunology , Programmed Cell Death 1 Receptor/immunology , Signal Transduction/immunology , Administration, Intravenous , Analysis of Variance , Antigens, Bacterial/immunology , Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/microbiology , Common Variable Immunodeficiency/microbiology , Cytokines/immunology , Flow Cytometry , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/pharmacology , Leukocytes, Mononuclear/immunology , Limulus Test , Programmed Cell Death 1 Receptor/metabolism
19.
Clin Transl Allergy ; 3(1): 17, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23725004

ABSTRACT

BACKGROUND: Synthetic contiguous overlapping peptides (COPs) may represent an alternative to allergen extracts or recombinant allergens for allergen specific immunotherapy. In combination, COPs encompass the entire allergen sequence, providing all potential T cell epitopes, while preventing IgE conformational epitopes of the native allergen. METHODS: Individual COPs were derived from the sequence of Bet v 1, the major allergen of birch pollen, and its known crystal structure, and designed to avoid IgE binding. Three sets of COPs were tested in vitro in competition ELISA and basophil degranulation assays. Their in vivo reactivity was determined by intraperitoneal challenge in rBet v 1 sensitized mice as well as by skin prick tests in volunteers with allergic rhinoconjunctivitis to birch pollen. RESULTS: The combination, named AllerT, of three COPs selected for undetectable IgE binding in competition assays and for the absence of basophil activation in vitro was unable to induce anaphylaxis in sensitized mice in contrast to rBet v 1. In addition no positive reactivity to AllerT was observed in skin prick tests in human volunteers allergic to birch pollen. In contrast, a second set of COPs, AllerT4-T5 displayed some residual IgE binding in competition ELISA and a weak subliminal reactivity to skin prick testing. CONCLUSIONS: The hypoallergenicity of contiguous overlapping peptides was confirmed by low, if any, IgE binding activity in vitro, by the absence of basophil activation and the absence of in vivo induction of allergic reactions in mouse and human. TRIAL REGISTRATION: ClinicalTrials.gov NCT01719133.

20.
Int J Inflam ; 2012: 686739, 2012.
Article in English | MEDLINE | ID: mdl-22762009

ABSTRACT

Introduction. Preclinical and clinical evidences for a role of oral probiotics in the management of allergic diseases are emerging. Aim. We aimed at testing the immunomodulatory effects of intranasal versus intragastric administration of Lactobacillus paracasei NCC2461 in a mouse model of allergic airway inflammation and the specificity of different probiotics by comparing L. paracasei NCC2461 to Lactobacillus plantarum NCC1107. Methods. L. paracasei NCC2461 or L. plantarum NCC1107 strains were administered either intragastrically (NCC2461) or intranasally (NCC2461 or NCC1107) to OVA-sensitized mice challenged with OVA aerosols. Inflammatory cell recruitment into BALF, eotaxin and IL-5 production in the lungs were measured. Results. Intranasal L. paracasei NCC2461 efficiently protected sensitized mice upon exposure to OVA aerosols in a dose-dependent manner as compared to control mice. Inflammatory cell number, eotaxin and IL-5 were significantly reduced in BALF. Intranasal supplementation of L. paracasei NCC2461 was more potent than intragastric application in limiting the allergic response and possibly linked to an increase in T regulatory cells in the lungs. Finally, intranasal L. plantarum NCC1107 reduced total and eosinophilic lung inflammation, but increased neutrophilia and macrophages infiltration. Conclusion. A concerted selection of intervention schedule, doses, and administration routes (intranasal versus intragastric) may markedly contribute to modulate airway inflammation in a probiotic strain-specific manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...