Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 89: 102895, 2023 10.
Article in English | MEDLINE | ID: mdl-37473609

ABSTRACT

Pre-training has shown success in different areas of machine learning, such as Computer Vision, Natural Language Processing (NLP), and medical imaging. However, it has not been fully explored for clinical data analysis. An immense amount of clinical records are recorded, but still, data and labels can be scarce for data collected in small hospitals or dealing with rare diseases. In such scenarios, pre-training on a larger set of unlabeled clinical data could improve performance. In this paper, we propose novel unsupervised pre-training techniques designed for heterogeneous, multi-modal clinical data for patient outcome prediction inspired by masked language modeling (MLM), by leveraging graph deep learning over population graphs. To this end, we further propose a graph-transformer-based network, designed to handle heterogeneous clinical data. By combining masking-based pre-training with a transformer-based network, we translate the success of masking-based pre-training in other domains to heterogeneous clinical data. We show the benefit of our pre-training method in a self-supervised and a transfer learning setting, utilizing three medical datasets TADPOLE, MIMIC-III, and a Sepsis Prediction Dataset. We find that our proposed pre-training methods help in modeling the data at a patient and population level and improve performance in different fine-tuning tasks on all datasets.


Subject(s)
Data Analysis , Language , Humans , Machine Learning , Rare Diseases
2.
IEEE Trans Med Imaging ; 41(5): 1269-1278, 2022 05.
Article in English | MEDLINE | ID: mdl-34928790

ABSTRACT

Modeling of brain tumor dynamics has the potential to advance therapeutic planning. Current modeling approaches resort to numerical solvers that simulate the tumor progression according to a given differential equation. Using highly-efficient numerical solvers, a single forward simulation takes up to a few minutes of compute. At the same time, clinical applications of tumor modeling often imply solving an inverse problem, requiring up to tens of thousands of forward model evaluations when used for a Bayesian model personalization via sampling. This results in a total inference time prohibitively expensive for clinical translation. While recent data-driven approaches become capable of emulating physics simulation, they tend to fail in generalizing over the variability of the boundary conditions imposed by the patient-specific anatomy. In this paper, we propose a learnable surrogate for simulating tumor growth which maps the biophysical model parameters directly to simulation outputs, i.e. the local tumor cell densities, whilst respecting patient geometry. We test the neural solver in a Bayesian model personalization task for a cohort of glioma patients. Bayesian inference using the proposed surrogate yields estimates analogous to those obtained by solving the forward model with a regular numerical solver. The near real-time computation cost renders the proposed method suitable for clinical settings. The code is available at https://github.com/IvanEz/tumor-surrogate.


Subject(s)
Brain Neoplasms , Glioma , Bayes Theorem , Brain Neoplasms/diagnostic imaging , Calibration , Computer Simulation , Glioma/diagnostic imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...