Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Am J Infect Control ; 50(3): 250-257, 2022 03.
Article in English | MEDLINE | ID: mdl-35067382

ABSTRACT

BACKGROUND: Interventions to better prevent or manage Clostridioides difficile infection (CDI) may significantly reduce morbidity, mortality, and healthcare spending. METHODS: We present a retrospective study using electronic health record data from over 700 United States hospitals. A subset of hospitals was used to develop machine learning algorithms (MLAs); the remaining hospitals served as an external test set. Three MLAs were evaluated: gradient-boosted decision trees (XGBoost), Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network. MLA performance was evaluated with area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, diagnostic odds ratios and likelihood ratios. RESULTS: The development dataset contained 13,664,840 inpatient encounters with 80,046 CDI encounters; the external dataset contained 1,149,088 inpatient encounters with 7,107 CDI encounters. The highest AUROCs were achieved for XGB, Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network via abstaining from use of specialized training techniques, resampling in isolation, and resampling and output bias in combination, respectively. XGBoost achieved the highest AUROC. CONCLUSIONS: MLAs can predict future CDI in hospitalized patients using just 6 hours of data. In clinical practice, a machine-learning based tool may support prophylactic measures, earlier diagnosis, and more timely implementation of infection control measures.


Subject(s)
Clostridioides difficile , Clostridium Infections , Clostridium Infections/diagnosis , Clostridium Infections/epidemiology , Humans , Machine Learning , ROC Curve , Retrospective Studies
2.
Am J Med Sci ; 364(1): 46-52, 2022 07.
Article in English | MEDLINE | ID: mdl-35081403

ABSTRACT

BACKGROUND: The aim of the study was to quantify the relationship between acute kidney injury (AKI) and alcohol use disorder (AUD). METHODS: We used a large academic medical center and the MIMIC-III databases to quantify AKI disease and mortality burden as well as AKI disease progression in the AUD and non-AUD subpopulations. We used the MIMIC-III dataset to compare two different methods of encoding AKI: ICD-9 codes, and the Kidney Disease: Improving Global Outcomes scheme (KDIGO) definition. In addition to the AUD subpopulation, we also present analyses for the hepatorenal syndrome (HRS) and alcohol-related cirrhosis subpopulations identified via ICD-9/ICD-10 coding. RESULTS: In both the ICD-9 and KDIGO encodings of AKI, the AUD subpopulation had a higher incidence of AKI (ICD-9: 43.3% vs. 37.92% AKI in the non-AUD subpopulations; KDIGO: 48.65% vs. 40.53%) in the MIMIC-III dataset. In the academic dataset, the AUD subpopulation also had a higher incidence of AKI than the non-AUD subpopulation (ICD-9/ICD-10: 12.76% vs. 10.71%). The mortality rate of the subpopulation with both AKI and AUD, HRS, or alcohol-related cirrhosis was consistently higher than that of the subpopulation with only AKI in both datasets, including after adjusting for disease severity using two methods of severity estimation in the MIMIC-III dataset. Disease progression rates were similar for AUD and non-AUD subpopulations. CONCLUSIONS: Our work shows that the AUD patient subpopulation had a higher number of AKI patients than the non-AUD subpopulation, and that patients with both AKI and AUD, HRS, or alcohol-related cirrhosis had higher rates of mortality than the non-AUD subpopulation with AKI.


Subject(s)
Acute Kidney Injury , Alcoholism , Hepatorenal Syndrome , Acute Kidney Injury/etiology , Alcoholism/complications , Cost of Illness , Disease Progression , Hospital Mortality , Humans , Liver Cirrhosis/complications , Retrospective Studies
3.
Healthc Technol Lett ; 8(6): 139-147, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938570

ABSTRACT

Diagnosis and appropriate intervention for myocardial infarction (MI) are time-sensitive but rely on clinical measures that can be progressive and initially inconclusive, underscoring the need for an accurate and early predictor of MI to support diagnostic and clinical management decisions. The objective of this study was to develop a machine learning algorithm (MLA) to predict MI diagnosis based on electronic health record data (EHR) readily available during Emergency Department assessment. An MLA was developed using retrospective patient data. The MLA used patient data as they became available in the first 3 h of care to predict MI diagnosis (defined by International Classification of Diseases, 10th revision code) at any time during the encounter. The MLA obtained an area under the receiver operating characteristic curve of 0.87, sensitivity of 87% and specificity of 70%, outperforming the comparator scoring systems TIMI and GRACE on all metrics. An MLA can synthesize complex EHR data to serve as a clinically relevant risk stratification tool for MI.

4.
Clin Imaging ; 80: 268-273, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34425544

ABSTRACT

INTRODUCTION: The objective of this study was to assess seven configurations of six convolutional deep neural network architectures for classification of chest X-rays (CXRs) as COVID-19 positive or negative. METHODS: The primary dataset consisted of 294 COVID-19 positive and 294 COVID-19 negative CXRs, the latter comprising roughly equally many pneumonia, emphysema, fibrosis, and healthy images. We used six common convolutional neural network architectures, VGG16, DenseNet121, DenseNet201, MobileNet, NasNetMobile and InceptionV3. We studied six models (one for each architecture) which were pre-trained on a vast repository of generic (non-CXR) images, as well as a seventh DenseNet121 model, which was pre-trained on a repository of CXR images. For each model, we replaced the output layers with custom fully connected layers for the task of binary classification of images as COVID-19 positive or negative. Performance metrics were calculated on a hold-out test set with CXRs from patients who were not included in the training/validation set. RESULTS: When pre-trained on generic images, the VGG16, DenseNet121, DenseNet201, MobileNet, NasNetMobile, and InceptionV3 architectures respectively produced hold-out test set areas under the receiver operating characteristic (AUROCs) of 0.98, 0.95, 0.97, 0.95, 0.99, and 0.96 for the COVID-19 classification of CXRs. The X-ray pre-trained DenseNet121 model, in comparison, had a test set AUROC of 0.87. DISCUSSION: Common convolutional neural network architectures with parameters pre-trained on generic images yield high-performance and well-calibrated COVID-19 CXR classification.


Subject(s)
COVID-19 , Deep Learning , Humans , Neural Networks, Computer , SARS-CoV-2 , X-Rays
5.
Health Policy Technol ; 10(3): 100554, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34367900

ABSTRACT

Objective: In the wake of COVID-19, the United States (U.S.) developed a three stage plan to outline the parameters to determine when states may reopen businesses and ease travel restrictions. The guidelines also identify subpopulations of Americans deemed to be at high risk for severe disease should they contract COVID-19. These guidelines were based on population level demographics, rather than individual-level risk factors. As such, they may misidentify individuals at high risk for severe illness, and may therefore be of limited use in decisions surrounding resource allocation to vulnerable populations. The objective of this study was to evaluate a machine learning algorithm for prediction of serious illness due to COVID-19 using inpatient data collected from electronic health records. Methods: The algorithm was trained to identify patients for whom a diagnosis of COVID-19 was likely to result in hospitalization, and compared against four U.S. policy-based criteria: age over 65; having a serious underlying health condition; age over 65 or having a serious underlying health condition; and age over 65 and having a serious underlying health condition. Results: This algorithm identified 80% of patients at risk for hospitalization due to COVID-19, versus 62% identified by government guidelines. The algorithm also achieved a high specificity of 95%, outperforming government guidelines. Conclusions: This algorithm may identify individuals likely to require hospitalization should they contract COVID-19. This information may be useful to guide vaccine distribution, anticipate hospital resource needs, and assist health care policymakers to make care decisions in a more principled manner.

6.
JMIR Form Res ; 5(9): e28028, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34398784

ABSTRACT

BACKGROUND: A high number of patients who are hospitalized with COVID-19 develop acute respiratory distress syndrome (ARDS). OBJECTIVE: In response to the need for clinical decision support tools to help manage the next pandemic during the early stages (ie, when limited labeled data are present), we developed machine learning algorithms that use semisupervised learning (SSL) techniques to predict ARDS development in general and COVID-19 populations based on limited labeled data. METHODS: SSL techniques were applied to 29,127 encounters with patients who were admitted to 7 US hospitals from May 1, 2019, to May 1, 2021. A recurrent neural network that used a time series of electronic health record data was applied to data that were collected when a patient's peripheral oxygen saturation level fell below the normal range (<97%) to predict the subsequent development of ARDS during the remaining duration of patients' hospital stay. Model performance was assessed with the area under the receiver operating characteristic curve and area under the precision recall curve of an external hold-out test set. RESULTS: For the whole data set, the median time between the first peripheral oxygen saturation measurement of <97% and subsequent respiratory failure was 21 hours. The area under the receiver operating characteristic curve for predicting subsequent ARDS development was 0.73 when the model was trained on a labeled data set of 6930 patients, 0.78 when the model was trained on the labeled data set that had been augmented with the unlabeled data set of 16,173 patients by using SSL techniques, and 0.84 when the model was trained on the entire training set of 23,103 labeled patients. CONCLUSIONS: In the context of using time-series inpatient data and a careful model training design, unlabeled data can be used to improve the performance of machine learning models when labeled data for predicting ARDS development are scarce or expensive.

7.
World J Gastroenterol ; 27(24): 3502-3515, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34239265

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by infection of the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with typical respiratory symptoms. SARS-CoV-2 invades not only the respiratory system, but also other organs expressing the cell surface receptor angiotensin converting enzyme 2. In particular, the digestive system is a susceptible target of SARS-CoV-2. Gastrointestinal symptoms of COVID-19 include anorexia, nausea, vomiting, diarrhea, abdominal pain, and liver damage. Patients with digestive damage have a greater chance of progressing to severe or critical illness, a poorer prognosis, and a higher risk of death. This paper aims to summarize the digestive system symptoms of COVID-19 and discuss fecal-oral contagion of SARS-CoV-2. It also describes the characteristics of inflammatory bowel disease patients with SARS-CoV-2 infection and discusses precautions for preventing SARS-CoV-2 infection during gastrointestinal endoscopy procedures. Improved attention to digestive system abnormalities and gastrointestinal symptoms of COVID-19 patients may aid health care providers in the process of clinical diagnosis, treatment, and epidemic prevention and control.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Liver Diseases , Digestive System , Humans , SARS-CoV-2
8.
Kidney Int Rep ; 6(5): 1289-1298, 2021 May.
Article in English | MEDLINE | ID: mdl-34013107

ABSTRACT

INTRODUCTION: Acute kidney injury (AKI) is common among hospitalized patients and has a significant impact on morbidity and mortality. Although early prediction of AKI has the potential to reduce adverse patient outcomes, it remains a difficult condition to predict and diagnose. The purpose of this study was to evaluate the ability of a machine learning algorithm to predict for AKI as defined by Kidney Disease: Improving Global Outcomes (KDIGO) stage 2 or 3 up to 48 hours in advance of onset using convolutional neural networks (CNNs) and patient electronic health record (EHR) data. METHODS: A CNN prediction system was developed to use EHR data gathered during patients' stays to predict AKI up to 48 hours before onset. A total of 12,347 patient encounters were retrospectively analyzed from the Medical Information Mart for Intensive Care III (MIMIC-III) database. An XGBoost AKI prediction model and the sequential organ failure assessment (SOFA) scoring system were used as comparators. The outcome was AKI onset. The model was trained on routinely collected patient EHR data. Measurements included area under the receiver operating characteristic (AUROC) curve, positive predictive value (PPV), and a battery of additional performance metrics for advance prediction of AKI onset. RESULTS: On a hold-out test set, the algorithm attained an AUROC of 0.86 and PPV of 0.24, relative to a cohort AKI prevalence of 7.62%, for long-horizon AKI prediction at a 48-hour window before onset. CONCLUSION: A CNN machine learning-based AKI prediction model outperforms XGBoost and the SOFA scoring system, revealing superior performance in predicting AKI 48 hours before onset, without reliance on serum creatinine (SCr) measurements.

9.
BioData Min ; 14(1): 23, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33789700

ABSTRACT

BACKGROUND: Acute heart failure (AHF) is associated with significant morbidity and mortality. Effective patient risk stratification is essential to guiding hospitalization decisions and the clinical management of AHF. Clinical decision support systems can be used to improve predictions of mortality made in emergency care settings for the purpose of AHF risk stratification. In this study, several models for the prediction of seven-day mortality among AHF patients were developed by applying machine learning techniques to retrospective patient data from 236,275 total emergency department (ED) encounters, 1881 of which were considered positive for AHF and were used for model training and testing. The models used varying subsets of age, sex, vital signs, and laboratory values. Model performance was compared to the Emergency Heart Failure Mortality Risk Grade (EHMRG) model, a commonly used system for prediction of seven-day mortality in the ED with similar (or, in some cases, more extensive) inputs. Model performance was assessed in terms of area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity. RESULTS: When trained and tested on a large academic dataset, the best-performing model and EHMRG demonstrated test set AUROCs of 0.84 and 0.78, respectively, for prediction of seven-day mortality. Given only measurements of respiratory rate, temperature, mean arterial pressure, and FiO2, one model produced a test set AUROC of 0.83. Neither a logistic regression comparator nor a simple decision tree outperformed EHMRG. CONCLUSIONS: A model using only the measurements of four clinical variables outperforms EHMRG in the prediction of seven-day mortality in AHF. With these inputs, the model could not be replaced by logistic regression or reduced to a simple decision tree without significant performance loss. In ED settings, this minimal-input risk stratification tool may assist clinicians in making critical decisions about patient disposition by providing early and accurate insights into individual patient's risk profiles.

10.
Clin Appl Thromb Hemost ; 27: 1076029621991185, 2021.
Article in English | MEDLINE | ID: mdl-33625875

ABSTRACT

Deep venous thrombosis (DVT) is associated with significant morbidity, mortality, and increased healthcare costs. Standard scoring systems for DVT risk stratification often provide insufficient stratification of hospitalized patients and are unable to accurately predict which inpatients are most likely to present with DVT. There is a continued need for tools which can predict DVT in hospitalized patients. We performed a retrospective study on a database collected from a large academic hospital, comprised of 99,237 total general ward or ICU patients, 2,378 of whom experienced a DVT during their hospital stay. Gradient boosted machine learning algorithms were developed to predict a patient's risk of developing DVT at 12- and 24-hour windows prior to onset. The primary outcome of interest was diagnosis of in-hospital DVT. The machine learning predictors obtained AUROCs of 0.83 and 0.85 for DVT risk prediction on hospitalized patients at 12- and 24-hour windows, respectively. At both 12 and 24 hours before DVT onset, the most important features for prediction of DVT were cancer history, VTE history, and internal normalized ratio (INR). Improved risk stratification may prevent unnecessary invasive testing in patients for whom DVT cannot be ruled out using existing methods. Improved risk stratification may also allow for more targeted use of prophylactic anticoagulants, as well as earlier diagnosis and treatment, preventing the development of pulmonary emboli and other sequelae of DVT.


Subject(s)
Machine Learning/standards , Venous Thrombosis/genetics , Adolescent , Adult , Aged , Hospitalization , Humans , Male , Middle Aged , Risk Assessment , Risk Factors , Venous Thrombosis/pathology , Young Adult
11.
J Clin Med ; 9(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256141

ABSTRACT

Therapeutic agents for the novel coronavirus disease 2019 (COVID-19) have been proposed, but evidence supporting their use is limited. A machine learning algorithm was developed in order to identify a subpopulation of COVID-19 patients for whom hydroxychloroquine was associated with improved survival; this population might be relevant for study in a clinical trial. A pragmatic trial was conducted at six United States hospitals. We enrolled COVID-19 patients that were admitted between 10 March and 4 June 2020. Treatment was not randomized. The study endpoint was mortality; discharge was a competing event. Hazard ratios were obtained on the entire population, and on the subpopulation indicated by the algorithm as suitable for treatment. A total of 290 patients were enrolled. In the subpopulation that was identified by the algorithm, hydroxychloroquine was associated with a statistically significant (p = 0.011) increase in survival (adjusted hazard ratio 0.29, 95% confidence interval (CI) 0.11-0.75). Adjusted survival among the algorithm indicated patients was 82.6% in the treated arm and 51.2% in the arm not treated. No association between treatment and mortality was observed in the general population. A 31% increase in survival at the end of the study was observed in a population of COVID-19 patients that were identified by a machine learning algorithm as having a better outcome with hydroxychloroquine treatment. Precision medicine approaches may be useful in identifying a subpopulation of COVID-19 patients more likely to be proven to benefit from hydroxychloroquine treatment in a clinical trial.

12.
JMIR Public Health Surveill ; 6(4): e22400, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33090117

ABSTRACT

BACKGROUND: Racial disparities in health care are well documented in the United States. As machine learning methods become more common in health care settings, it is important to ensure that these methods do not contribute to racial disparities through biased predictions or differential accuracy across racial groups. OBJECTIVE: The goal of the research was to assess a machine learning algorithm intentionally developed to minimize bias in in-hospital mortality predictions between white and nonwhite patient groups. METHODS: Bias was minimized through preprocessing of algorithm training data. We performed a retrospective analysis of electronic health record data from patients admitted to the intensive care unit (ICU) at a large academic health center between 2001 and 2012, drawing data from the Medical Information Mart for Intensive Care-III database. Patients were included if they had at least 10 hours of available measurements after ICU admission, had at least one of every measurement used for model prediction, and had recorded race/ethnicity data. Bias was assessed through the equal opportunity difference. Model performance in terms of bias and accuracy was compared with the Modified Early Warning Score (MEWS), the Simplified Acute Physiology Score II (SAPS II), and the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE). RESULTS: The machine learning algorithm was found to be more accurate than all comparators, with a higher sensitivity, specificity, and area under the receiver operating characteristic. The machine learning algorithm was found to be unbiased (equal opportunity difference 0.016, P=.20). APACHE was also found to be unbiased (equal opportunity difference 0.019, P=.11), while SAPS II and MEWS were found to have significant bias (equal opportunity difference 0.038, P=.006 and equal opportunity difference 0.074, P<.001, respectively). CONCLUSIONS: This study indicates there may be significant racial bias in commonly used severity scoring systems and that machine learning algorithms may reduce bias while improving on the accuracy of these methods.


Subject(s)
Forecasting/methods , Hospital Mortality , Machine Learning/standards , APACHE , Adult , Aged , Algorithms , Cohort Studies , Early Warning Score , Electronic Health Records/statistics & numerical data , Female , Humans , Machine Learning/statistics & numerical data , Male , Middle Aged , Retrospective Studies , Simplified Acute Physiology Score
13.
BMC Med Inform Decis Mak ; 20(1): 276, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33109167

ABSTRACT

BACKGROUND: Severe sepsis and septic shock are among the leading causes of death in the United States and sepsis remains one of the most expensive conditions to diagnose and treat. Accurate early diagnosis and treatment can reduce the risk of adverse patient outcomes, but the efficacy of traditional rule-based screening methods is limited. The purpose of this study was to develop and validate a machine learning algorithm (MLA) for severe sepsis prediction up to 48 h before onset using a diverse patient dataset. METHODS: Retrospective analysis was performed on datasets composed of de-identified electronic health records collected between 2001 and 2017, including 510,497 inpatient and emergency encounters from 461 health centers collected between 2001 and 2015, and 20,647 inpatient and emergency encounters collected in 2017 from a community hospital. MLA performance was compared to commonly used disease severity scoring systems and was evaluated at 0, 4, 6, 12, 24, and 48 h prior to severe sepsis onset. RESULTS: 270,438 patients were included in analysis. At time of onset, the MLA demonstrated an AUROC of 0.931 (95% CI 0.914, 0.948) and a diagnostic odds ratio (DOR) of 53.105 on a testing dataset, exceeding MEWS (0.725, P < .001; DOR 4.358), SOFA (0.716; P < .001; DOR 3.720), and SIRS (0.655; P < .001; DOR 3.290). For prediction 48 h prior to onset, the MLA achieved an AUROC of 0.827 (95% CI 0.806, 0.848) on a testing dataset. On an external validation dataset, the MLA achieved an AUROC of 0.948 (95% CI 0.942, 0.954) at the time of onset, and 0.752 at 48 h prior to onset. CONCLUSIONS: The MLA accurately predicts severe sepsis onset up to 48 h in advance using only readily available vital signs extracted from the existing patient electronic health records. Relevant implications for clinical practice include improved patient outcomes from early severe sepsis detection and treatment.


Subject(s)
Decision Support Systems, Clinical , Machine Learning/standards , Sepsis/diagnosis , Algorithms , Datasets as Topic , Female , Forecasting , Hospital Mortality , Humans , Intensive Care Units , Male , Predictive Value of Tests , Reproducibility of Results , Retrospective Studies , Sepsis/mortality , Severity of Illness Index , Time Factors , Time-to-Treatment
14.
Ann Med Surg (Lond) ; 59: 207-216, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33042536

ABSTRACT

RATIONALE: Prediction of patients at risk for mortality can help triage patients and assist in resource allocation. OBJECTIVES: Develop and evaluate a machine learning-based algorithm which accurately predicts mortality in COVID-19, pneumonia, and mechanically ventilated patients. METHODS: Retrospective study of 53,001 total ICU patients, including 9166 patients with pneumonia and 25,895 mechanically ventilated patients, performed on the MIMIC dataset. An additional retrospective analysis was performed on a community hospital dataset containing 114 patients positive for SARS-COV-2 by PCR test. The outcome of interest was in-hospital patient mortality. RESULTS: When trained and tested on the MIMIC dataset, the XGBoost predictor obtained area under the receiver operating characteristic (AUROC) values of 0.82, 0.81, 0.77, and 0.75 for mortality prediction on mechanically ventilated patients at 12-, 24-, 48-, and 72- hour windows, respectively, and AUROCs of 0.87, 0.78, 0.77, and 0.734 for mortality prediction on pneumonia patients at 12-, 24-, 48-, and 72- hour windows, respectively. The predictor outperformed the qSOFA, MEWS and CURB-65 risk scores at all prediction windows. When tested on the community hospital dataset, the predictor obtained AUROCs of 0.91, 0.90, 0.86, and 0.87 for mortality prediction on COVID-19 patients at 12-, 24-, 48-, and 72- hour windows, respectively, outperforming the qSOFA, MEWS and CURB-65 risk scores at all prediction windows. CONCLUSIONS: This machine learning-based algorithm is a useful predictive tool for anticipating patient mortality at clinically useful timepoints, and is capable of accurate mortality prediction for mechanically ventilated patients as well as those diagnosed with pneumonia and COVID-19.

15.
J Crit Care ; 60: 96-102, 2020 12.
Article in English | MEDLINE | ID: mdl-32777759

ABSTRACT

PURPOSE: Acute respiratory distress syndrome (ARDS) is a serious respiratory condition with high mortality and associated morbidity. The objective of this study is to develop and evaluate a novel application of gradient boosted tree models trained on patient health record data for the early prediction of ARDS. MATERIALS AND METHODS: 9919 patient encounters were retrospectively analyzed from the Medical Information Mart for Intensive Care III (MIMIC-III) data base. XGBoost gradient boosted tree models for early ARDS prediction were created using routinely collected clinical variables and numerical representations of radiology reports as inputs. XGBoost models were iteratively trained and validated using 10-fold cross validation. RESULTS: On a hold-out test set, algorithm classifiers attained area under the receiver operating characteristic curve (AUROC) values of 0.905 when tested for the detection of ARDS at onset and 0.827, 0.810, and 0.790 for the prediction of ARDS at 12-, 24-, and 48-h windows prior to onset, respectively. CONCLUSION: Supervised machine learning predictions may help predict patients with ARDS up to 48 h prior to onset.


Subject(s)
Critical Care/methods , Respiratory Distress Syndrome/diagnosis , Supervised Machine Learning , Adolescent , Adult , Aged , Area Under Curve , Databases, Factual , Early Diagnosis , Female , Humans , Intensive Care Units , Male , Middle Aged , ROC Curve , Retrospective Studies , Risk Factors , Young Adult
16.
Comput Biol Med ; 124: 103949, 2020 09.
Article in English | MEDLINE | ID: mdl-32798922

ABSTRACT

BACKGROUND: Currently, physicians are limited in their ability to provide an accurate prognosis for COVID-19 positive patients. Existing scoring systems have been ineffective for identifying patient decompensation. Machine learning (ML) may offer an alternative strategy. A prospectively validated method to predict the need for ventilation in COVID-19 patients is essential to help triage patients, allocate resources, and prevent emergency intubations and their associated risks. METHODS: In a multicenter clinical trial, we evaluated the performance of a machine learning algorithm for prediction of invasive mechanical ventilation of COVID-19 patients within 24 h of an initial encounter. We enrolled patients with a COVID-19 diagnosis who were admitted to five United States health systems between March 24 and May 4, 2020. RESULTS: 197 patients were enrolled in the REspirAtory Decompensation and model for the triage of covid-19 patients: a prospective studY (READY) clinical trial. The algorithm had a higher diagnostic odds ratio (DOR, 12.58) for predicting ventilation than a comparator early warning system, the Modified Early Warning Score (MEWS). The algorithm also achieved significantly higher sensitivity (0.90) than MEWS, which achieved a sensitivity of 0.78, while maintaining a higher specificity (p < 0.05). CONCLUSIONS: In the first clinical trial of a machine learning algorithm for ventilation needs among COVID-19 patients, the algorithm demonstrated accurate prediction of the need for mechanical ventilation within 24 h. This algorithm may help care teams effectively triage patients and allocate resources. Further, the algorithm is capable of accurately identifying 16% more patients than a widely used scoring system while minimizing false positive results.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Machine Learning , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/physiopathology , Adult , Aged , Aged, 80 and over , Algorithms , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/statistics & numerical data , Computational Biology , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/therapy , Prognosis , Prospective Studies , Respiration, Artificial , Respiratory Insufficiency/therapy , SARS-CoV-2 , Sensitivity and Specificity , Triage/methods , Triage/statistics & numerical data , United States/epidemiology , COVID-19 Drug Treatment
17.
BMJ Health Care Inform ; 27(1)2020 Apr.
Article in English | MEDLINE | ID: mdl-32354696

ABSTRACT

BACKGROUND: Severe sepsis and septic shock are among the leading causes of death in the USA. While early prediction of severe sepsis can reduce adverse patient outcomes, sepsis remains one of the most expensive conditions to diagnose and treat. OBJECTIVE: The purpose of this study was to evaluate the effect of a machine learning algorithm for severe sepsis prediction on in-hospital mortality, hospital length of stay and 30-day readmission. DESIGN: Prospective clinical outcomes evaluation. SETTING: Evaluation was performed on a multiyear, multicentre clinical data set of real-world data containing 75 147 patient encounters from nine hospitals across the continental USA, ranging from community hospitals to large academic medical centres. PARTICIPANTS: Analyses were performed for 17 758 adult patients who met two or more systemic inflammatory response syndrome criteria at any point during their stay ('sepsis-related' patients). INTERVENTIONS: Machine learning algorithm for severe sepsis prediction. OUTCOME MEASURES: In-hospital mortality, length of stay and 30-day readmission rates. RESULTS: Hospitals saw an average 39.5% reduction of in-hospital mortality, a 32.3% reduction in hospital length of stay and a 22.7% reduction in 30-day readmission rate for sepsis-related patient stays when using the machine learning algorithm in clinical outcomes analysis. CONCLUSIONS: Reductions of in-hospital mortality, hospital length of stay and 30-day readmissions were observed in real-world clinical use of the machine learning-based algorithm. The predictive algorithm may be successfully used to improve sepsis-related outcomes in live clinical settings. TRIAL REGISTRATION NUMBER: NCT03960203.


Subject(s)
Algorithms , Hospital Mortality/trends , Length of Stay , Patient Readmission , Sepsis/mortality , Adult , Aged , Databases, Factual , Female , Forecasting , Humans , Male , Middle Aged , Prospective Studies , United States/epidemiology , Young Adult
18.
Front Neurol ; 11: 625272, 2020.
Article in English | MEDLINE | ID: mdl-33551979

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) broke out in Wuhan, China, in late December 2019 and has since spread rapidly around the world. Severe coronavirus disease 2019 (COVID-19) pneumonia patients have abnormal blood coagulation function, but their thromboembolism prevalence is still unknown. We reported a case of a 49-year-old man infected with COVID-19, presenting with fever, chest pain, limb weakness, myalgia, and dyspnea. The patient was diagnosed with severe COVID-19 pneumonia, pulmonary thromboembolism (PTE), deep vein thrombosis (DVT), and cerebral infarction. He received supportive and empirical treatment including anticoagulant treatment, anti-inflammatory treatment, oxygen supply, and inhalation therapy. The patient's symptoms, CT images, and laboratory results improved after treatment, and a throat swab was reported to be negative for SARS-CoV-2 virus by polymerase chain reaction (PCR) test. However, on day 51 of illness onset, CT reexamination demonstrated hemorrhagic infarction. Anticoagulant therapy was discontinued temporarily. After the patient tested negative for SARS-CoV-2 virus by PCR test six more times, he was discharged and remained in home quarantine. This case highlights the importance of clinician attentiveness to the appearance of multiple thromboembolism, especially in patients with severe pulmonary damage. It also emphasizes the diagnostic value of early CT imaging and the need for effective treatment once thrombotic events occur.

19.
Health Informatics J ; 26(3): 1912-1925, 2020 09.
Article in English | MEDLINE | ID: mdl-31884847

ABSTRACT

In order to evaluate mortality predictions based on boosted trees, this retrospective study uses electronic medical record data from three academic health centers for inpatients 18 years or older with at least one observation of each vital sign. Predictions were made 12, 24, and 48 hours before death. Models fit to training data from each institution were evaluated using hold-out test data from the same institution, and from the other institutions. Gradient-boosted trees (GBT) were compared to regularized logistic regression (LR) predictions, support vector machine (SVM) predictions, quick Sepsis-Related Organ Failure Assessment (qSOFA), and Modified Early Warning Score (MEWS) using area under the receiver operating characteristic curve (AUROC). For training and testing GBT on data from the same institution, the average AUROCs were 0.96, 0.95, and 0.94 across institutional test sets for 12-, 24-, and 48-hour predictions, respectively. When trained and tested on data from different hospitals, GBT AUROCs achieved up to 0.98, 0.96, and 0.96, for 12-, 24-, and 48-hour predictions, respectively. Average AUROC for 48-hour predictions for LR, SVM, MEWS, and qSOFA were 0.85, 0.79, 0.86 and 0.82, respectively. GBT predictions may help identify patients who would benefit from increased clinical care.


Subject(s)
Machine Learning , Sepsis , Algorithms , Hospital Mortality , Humans , Retrospective Studies
20.
Front Pediatr ; 7: 413, 2019.
Article in English | MEDLINE | ID: mdl-31681711

ABSTRACT

Background: Early detection of pediatric severe sepsis is necessary in order to optimize effective treatment, and new methods are needed to facilitate this early detection. Objective: Can a machine-learning based prediction algorithm using electronic healthcare record (EHR) data predict severe sepsis onset in pediatric populations? Methods: EHR data were collected from a retrospective set of de-identified pediatric inpatient and emergency encounters for patients between 2-17 years of age, drawn from the University of California San Francisco (UCSF) Medical Center, with encounter dates between June 2011 and March 2016. Results: Pediatric patients (n = 9,486) were identified and 101 (1.06%) were labeled with severe sepsis following the pediatric severe sepsis definition of Goldstein et al. (1). In 4-fold cross-validation evaluations, the machine learning algorithm achieved an AUROC of 0.916 for discrimination between severe sepsis and control pediatric patients at the time of onset and AUROC of 0.718 at 4 h before onset. The prediction algorithm significantly outperformed the Pediatric Logistic Organ Dysfunction score (PELOD-2) (p < 0.05) and pediatric Systemic Inflammatory Response Syndrome (SIRS) (p < 0.05) in the prediction of severe sepsis 4 h before onset using cross-validation and pairwise t-tests. Conclusion: This machine learning algorithm has the potential to deliver high-performance severe sepsis detection and prediction through automated monitoring of EHR data for pediatric inpatients, which may enable earlier sepsis recognition and treatment initiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...