Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 81(1): 193, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652325

ABSTRACT

The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.


Subject(s)
Acetyltransferases , Microtubule Proteins , Tubulin , Humans , Acetyltransferases/metabolism , Acetyltransferases/chemistry , Tubulin/metabolism , Tubulin/chemistry , Animals , Protein Processing, Post-Translational , Acetylation , Microtubules/metabolism , Mitosis , Cell Movement , Neoplasms/pathology , Neoplasms/enzymology , Neoplasms/metabolism , Cytoskeleton/metabolism
2.
J Med Chem ; 66(10): 6591-6616, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37155735

ABSTRACT

KAT8 is a lysine acetyltransferase primarily catalyzing the acetylation of Lys16 of histone H4 (H4K16). KAT8 dysregulation is linked to the development and metastatization of many cancer types, including non-small cell lung cancer (NSCLC) and acute myeloid leukemia (AML). Few KAT8 inhibitors have been reported so far, none of which displaying selective activity. Based on the KAT3B/KDAC inhibitor C646, we developed a series of N-phenyl-5-pyrazolone derivatives and identified compounds 19 and 34 as low-micromolar KAT8 inhibitors selective over a panel of KATs and KDACs. Western blot, immunofluorescence, and CETSA experiments demonstrated that both inhibitors selectively target KAT8 in cells. Moreover, 19 and 34 exhibited mid-micromolar antiproliferative activity in different cancer cell lines, including NSCLC and AML, without impacting the viability of nontransformed cells. Overall, these compounds are valuable tools for elucidating KAT8 biology, and their simple structures make them promising candidates for future optimization studies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Leukemia, Myeloid, Acute , Lung Neoplasms , Lysine Acetyltransferases , Humans , Lysine Acetyltransferases/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Histones/metabolism , Acetylation , Histone Acetyltransferases/metabolism
3.
Autophagy ; 19(7): 2078-2093, 2023 07.
Article in English | MEDLINE | ID: mdl-36704963

ABSTRACT

Macroautophagy/autophagy has been shown to exert a dual role in cancer i.e., promoting cell survival or cell death depending on the cellular context and the cancer stage. Therefore, development of potent autophagy modulators, with a clear mechanistic understanding of their target action, has paramount importance in both mechanistic and clinical studies. In the process of exploring the mechanism of action of a previously identified cytotoxic small molecule (SM15) designed to target microtubules and the interaction domain of microtubules and the kinetochore component NDC80/HEC1, we discovered that the molecule acts as a potent autophagy inhibitor. By using several biochemical and cell biology assays we demonstrated that SM15 blocks basal autophagic flux by inhibiting the fusion of correctly formed autophagosomes with lysosomes. SM15-induced autophagic flux blockage promoted apoptosis-mediated cell death associated with ROS production. Interestingly, autophagic flux blockage, apoptosis induction and ROS production were rescued by genetic or pharmacological inhibition of OGT (O-linked N-acetylglucosamine (GlcNAc) transferase) or by expressing an O-GlcNAcylation-defective mutant of the SNARE fusion complex component SNAP29, pointing to SNAP29 as the molecular target of SM15 in autophagy. Accordingly, SM15 was found to enhance SNAP29 O-GlcNAcylation and, thereby, inhibit the formation of the SNARE fusion complex. In conclusion, these findings identify a new pathway in autophagy connecting O-GlcNAcylated SNAP29 to autophagic flux blockage and autophagosome accumulation, that, in turn, drives ROS production and apoptotic cell death. Consequently, modulation of SNAP29 activity may represent a new opportunity for therapeutic intervention in cancer and other autophagy-associated diseases.


Subject(s)
Autophagosomes , Autophagy , Autophagosomes/metabolism , Autophagy/physiology , Macroautophagy , Reactive Oxygen Species/metabolism , Lysosomes/metabolism , SNARE Proteins/metabolism , Apoptosis
4.
J Med Chem ; 64(23): 17031-17050, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34843649

ABSTRACT

MINA53 is a JmjC domain 2-oxoglutarate-dependent oxygenase that catalyzes ribosomal hydroxylation and is a target of the oncogenic transcription factor c-MYC. Despite its anticancer target potential, no small-molecule MINA53 inhibitors are reported. Using ribosomal substrate fragments, we developed mass spectrometry assays for MINA53 and the related oxygenase NO66. These assays enabled the identification of 2-(aryl)alkylthio-3,4-dihydro-4-oxoypyrimidine-5-carboxylic acids as potent MINA53 inhibitors, with selectivity over NO66 and other JmjC oxygenases. Crystallographic studies with the JmjC demethylase KDM5B revealed active site binding but without direct metal chelation; however, molecular modeling investigations indicated that the inhibitors bind to MINA53 by directly interacting with the iron cofactor. The MINA53 inhibitors manifest evidence for target engagement and selectivity for MINA53 over KDM4-6. The MINA53 inhibitors show antiproliferative activity with solid cancer lines and sensitize cancer cells to conventional chemotherapy, suggesting that further work investigating their potential in combination therapies is warranted.


Subject(s)
Dioxygenases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , Ribosomes/enzymology , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallization , Dioxygenases/chemistry , Dioxygenases/metabolism , Enzyme Inhibitors/metabolism , Histone Demethylases/chemistry , Histone Demethylases/metabolism , Humans , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Conformation , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...