Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(45): 17963-17971, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36305869

ABSTRACT

We report the synthesis of five new hybrid materials containing the [PuCl6]2- anion and charge-balancing, noncovalent interaction donating 4-X-pyridinium (X = H, Cl, Br, I) cations. Single crystals of the title compounds were grown and harvested from acidic, chloride-rich, aqueous media, and their structures were determined via X-ray diffraction. Compounds 1-4, (4XPyH)2[PuCl6], and 5, (4IPyH)4[PuCl6]·2Cl, exhibit two distinct sheet-like structure types. Structurally relevant noncovalent interactions were tabulated from crystallographic data and verified computationally using electrostatic surface potential maps and the quantum theory of atoms in molecules (QTAIM). The strength of the hydrogen and halogen bonds was quantified using Kohn-Sham density functional theory, and a hierarchy of acceptor-donor pairings was established. The PuIV-Cl bonds were studied using QTAIM and natural localized molecular orbital (NLMO) analyses to delineate the underlying bond mechanism and hybrid atomic orbital contributions therein. The results of the PuIV-Cl bond analyses were compared across compositions via analogous treatments of previously reported [PuO2Cl4]2- and [PuCl3(H2O)5] molecular units. The Pu-Cl bonds are predominately ionic yet exhibit small varying degrees of covalent character that increases from [PuCl3(H2O)5] and [PuO2Cl4]2- to [PuCl6]2-, while the participation of the Pu-based s/d and f orbitals concurrently decreases and increases, respectively.

2.
Anal Chem ; 91(10): 6522-6529, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31018634

ABSTRACT

We report elemental and isotopic analysis for the noble metal fission product phase found in irradiated nuclear fuel. The noble metal phase was isolated from three commercial irradiated UO2 fuels by chemically dissolving the UO2 fuel matrix, leaving the noble metal phase as the undissolved residue. Macro amounts of this residue were dissolved using a KOH + KNO3 fusion and then chemically separated into individual elements for analysis by mass spectrometry. Though the composition of this phase has been previously reported, this work is the most comprehensive chemical analysis of the isolated noble metal phase to date. We report both elemental and isotopic abundances of the five major components of the noble metal phase (Mo, Tc, Ru, Rh, Pd). In addition, we report a sixth element present in high quantities in this phase, tellurium. Tellurium appears to be an integral component of noble metal particles.

3.
Chem Commun (Camb) ; 54(85): 12014-12017, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30295690

ABSTRACT

Four new [Pu(iv)Cln(NO3)6-n]2- (n = 0, 2, 3) and [Pu(vi)O2Cl3(NO3)]2- containing materials were crystallized from acidic, aqueous media and structurally characterized. The anions are assembled via hydrogen and halogen bonding motifs, which are rationalized computationally. The Pu-NO3 and -Cl bonds were probed using QTAIM and NLMO analyses and found to be polar and largely ionic.

4.
Inorg Chem ; 57(4): 2278-2287, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29406706

ABSTRACT

The crystal structures of americium species containing a common multifunctional phosphine oxide ligand, reported for its ability to extract f elements from acidic solutions, namely, 2,6-[Ph2P(O)CH2]2C5H3-NO, L, were finally determined after over three decades of separations studies involving these species and their surrogates. The molecular compounds Am(L)(NO3)3, Am 1:1, and [Am(L)2(NO3)][2(NO3)], Am 2:1, along with their neodymium and europium analogues, were synthesized and characterized using single-crystal X-ray crystallography, attenuated total reflectance Fourier transform infrared spectroscopy, and luminescence spectroscopy to provide a comprehensive comparison with new and known analogous complexes.

5.
Chem Commun (Camb) ; 53(78): 10816-10819, 2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28926048

ABSTRACT

Crystals of a hydrated Pu(iii) chloride, (C5H5NBr)2[PuCl3(H2O)5]·2Cl·2H2O, were grown via slow evaporation from acidic aqueous, high chloride media. X-ray diffraction data reveals the neutral [PuCl3(H2O)5] tecton is assembled via charge assisted hydrogen and halogen bonds donated by 4-bromopyridinium cations and a series of inter-tecton hydrogen bonds.

6.
Inorg Chem ; 56(16): 9676-9683, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28783328

ABSTRACT

Single-crystal time-of-flight neutron diffraction has provided atomic resolution of H atoms of H2O molecules and hydroxyl groups, as well as Li cations in the uranyl peroxide nanocluster U60. Solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy was used to confirm the dynamics of these constituents, revealing the transportation of Li atoms and H2O through cluster walls. H atoms of hydroxyl units that are located on the cluster surface are involved in the transfer of H2O and Li cations from inside to outside and vice versa. This exchange occurs as a concerted motion and happens rapidly even in the solid state. As a consequence of its large size and open hexagonal pores, U60 exchanges Li cations more rapidly compared to other uranyl nanoclusters.

7.
J Am Chem Soc ; 139(31): 10843-10855, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28700221

ABSTRACT

Assembly of a family of 12 supramolecular compounds containing [AnO2Cl4]2- (An = U, Np, Pu), via hydrogen and halogen bonds donated by substituted 4-X-pyridinium cations (X = H, Cl, Br, I), is reported. These materials were prepared from a room-temperature synthesis wherein crystallization of unhydrolyzed and valence-pure [An(VI)O2Cl4]2- (An = U, Np, Pu) tectons is the norm. We present a hierarchy of assembly criteria based on crystallographic observations and subsequently quantify the strengths of the non-covalent interactions using Kohn-Sham density functional calculations. We provide, for the first time, a detailed description of the electrostatic potentials of the actinyl tetrahalide dianions and reconcile crystallographically observed structural motifs and non-covalent interaction acceptor-donor pairings. Our findings indicate that the average electrostatic potential across the halogen ligands (the acceptors) changes by only ∼2 kJ mol-1 across the AnO22+ series, indicating that the magnitude of the potential is independent of the metal center. The role of the cation is therefore critical in directing structural motifs and dictating the resulting hydrogen and halogen bond strengths, the former being stronger due to the positive charge centralized on the pyridyl nitrogen, N-H+. Subsequent analyses using the quantum theory of atoms in molecules and natural bond orbital approaches support this conclusion and highlight the structure-directing role of the cations. Whereas one can infer that Columbic attraction is the driver for assembly, the contribution of the non-covalent interaction is to direct the molecular-level arrangement (or disposition) of the tectons.

8.
Inorg Chem ; 56(3): 1333-1339, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28075118

ABSTRACT

Uranium concentrations as high as 2.94 × 105 parts per million (1.82 mol of U/1 kg of H2O) occur in water containing nanoscale uranyl cage clusters. The anionic cage clusters, with diameters of 1.5-2.5 nm, are charge-balanced by encapsulated cations, as well as cations within their electrical double layer in solution. The concentration of uranium in these systems is impacted by the countercations (K, Li, Na), and molecular dynamics simulations have predicted their distributions in selected cases. Formation of uranyl cages prevents hydrolysis reactions that would result in formation of insoluble uranyl solids under alkaline conditions, and these spherical clusters reach concentrations that require close packing in solution.

9.
J Am Chem Soc ; 138(27): 8547-53, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27322657

ABSTRACT

The first neutron diffraction study of a single crystal containing uranyl peroxide nanoclusters is reported for pyrophosphate-functionalized Na44K6[(UO2)24(O2)24(P2O7)12][IO3]2·140H2O (1). Relative to earlier X-ray studies, neutron diffraction provides superior information concerning the positions of H atoms and lighter counterions. Hydrogen positions have been assigned and reveal an extensive network of H-bonds; notably, most O atoms present in the anionic cluster accept H-bonds from surrounding H2O molecules, and none of the surface-bound O atoms are protonated. The D4h symmetry of the cage is consistent with the presence of six encapsulated K cations, which appear to stabilize the lower symmetry variant of this cluster. (31)P NMR measurements demonstrate retention of this symmetry in solution, while in situ (31)P NMR studies suggest an acid-catalyzed mechanism for the assembly of 1 across a wide range of pH values.

SELECTION OF CITATIONS
SEARCH DETAIL
...