Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 404
Filter
1.
Res Sq ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826189

ABSTRACT

Background The effect of vaccination on the epigenome remains poorly characterized. In previous research, we identified an association between seroprotection against influenza and DNA methylation at sites associated with the RIG-1 signaling pathway, which recognizes viral double-stranded RNA and leads to a type I interferon response. However, these studies did not fully account for confounding factors including age, gender, and BMI, along with changes in cell type composition. Results Here, we studied the influenza vaccine response in a longitudinal cohort vaccinated over two consecutive years (2019-2020 and 2020-2021), using peripheral blood mononuclear cells and a targeted DNA methylation approach. To address the effects of multiple factors on the epigenome, we designed a multivariate multiple regression model that included seroprotection levels as quantified by the hemagglutination-inhibition (HAI) assay test. Conclusions Our findings indicate that 179 methylation sites can be combined as potential signatures to predict seroprotection. These sites were not only enriched for genes involved in the regulation of the RIG-I signaling pathway, as found previously, but also enriched for other genes associated with innate immunity to viruses and the transcription factor binding sites of BRD4, which is known to impact T cell memory. We propose a model to suggest that the RIG-I pathway and BRD4 could potentially be modulated to improve immunization strategies.

2.
BMC Oral Health ; 24(1): 531, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704566

ABSTRACT

BACKGROUND: Oral Health-Related Quality of Life (OHRQoL) is a comprehensive concept covering daily comfort, self-esteem, and satisfaction with oral health, including functional, psychological, and social aspects, as well as pain experiences. Despite abundant research on OHRQoL related to oral diseases and hygiene, there is limited data on how patients perceive changes after implant-prosthetic rehabilitation. This study aimed to evaluate OHRQoL and aesthetic perception using OHIP-14 and VAS scales respectively, before (baseline-TB), during (provisional prostheses-TP), and after (definitive prostheses-TD) implant-prosthetic rehabilitation. It also explored the impact of biological sex, substitution numbers, and aesthetic interventions on OHRQoL and VAS scores, along with changes in OHIP-14 domains. METHODS: A longitudinal prospective single-center observational cohort study was conducted with patients requiring implant-prosthetic rehabilitation. Quality of life relating to dental implants was assessed through the Italian version of Oral Health Impact Profile-14 (IOHIP-14), which has a summary score from 14 to 70. Patients' perceived aesthetic was analyzed through a VAS scale from 0 to 100. Generalized Linear Mixed Effect Models, Linear Mixed Effect Models, and Friedman test analyzed patient responses. RESULTS: 99 patients (35 males, 64 females) aged 61-74, receiving various prosthetic interventions, were enrolled. Both provisional and definitive prosthetic interventions significantly decreased the odds of a worse quality of life compared to baseline, with odds ratios of 0.04 and 0.01 respectively. VAS scores increased significantly after both interventions, with estimated increases of 30.44 and 51.97 points respectively. Patient-level variability was notable, with an Intraclass Correlation Coefficient (ICC) of 0.43. While biological sex, substitution numbers, and aesthetic interventions didn't significantly affect VAS scores, OHRQoL domains showed significant changes post-intervention. CONCLUSIONS: These findings support the effectiveness of implant-prosthetic interventions in improving the quality of life and perceived aesthetics of patients undergoing oral rehabilitation. They have important implications for clinical practice, highlighting the importance of individualized treatment approaches to optimize patient outcomes and satisfaction in oral health care.


Subject(s)
Dental Prosthesis, Implant-Supported , Esthetics, Dental , Oral Health , Quality of Life , Humans , Male , Female , Prospective Studies , Dental Prosthesis, Implant-Supported/psychology , Middle Aged , Aged , Longitudinal Studies
3.
Nat Biotechnol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744947

ABSTRACT

Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.

4.
Nucleic Acids Res ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797520

ABSTRACT

Whole-genome bisulfite sequencing (BS-Seq) measures cytosine methylation changes at single-base resolution and can be used to profile cell-free DNA (cfDNA). In plasma, ultrashort single-stranded cfDNA (uscfDNA, ∼50 nt) has been identified together with 167 bp double-stranded mononucleosomal cell-free DNA (mncfDNA). However, the methylation profile of uscfDNA has not been described. Conventional BS-Seq workflows may not be helpful because bisulfite conversion degrades larger DNA into smaller fragments, leading to erroneous categorization as uscfDNA. We describe the '5mCAdpBS-Seq' workflow in which pre-methylated 5mC (5-methylcytosine) single-stranded adapters are ligated to heat-denatured cfDNA before bisulfite conversion. This method retains only DNA fragments that are unaltered by bisulfite treatment, resulting in less biased uscfDNA methylation analysis. Using 5mCAdpBS-Seq, uscfDNA had lower levels of DNA methylation (∼15%) compared to mncfDNA and was enriched in promoters and CpG islands. Hypomethylated uscfDNA fragments were enriched in upstream transcription start sites (TSSs), and the intensity of enrichment was correlated with expressed genes of hemopoietic cells. Using tissue-of-origin deconvolution, we inferred that uscfDNA is derived primarily from eosinophils, neutrophils, and monocytes. As proof-of-principle, we show that characteristics of the methylation profile of uscfDNA can distinguish non-small cell lung carcinoma from non-cancer samples. The 5mCAdpBS-Seq workflow is recommended for any cfDNA methylation-based investigations.

6.
Case Rep Dent ; 2024: 5584515, 2024.
Article in English | MEDLINE | ID: mdl-38798911

ABSTRACT

Introduction: A postsurgical ciliated cyst (PSCC) is an epithelial cyst that usually develops in the maxilla, although in rare cases, it can affect the mandible or other facial bones. The typical age of diagnosis is 40-50 years, with no gender prevalence, and the mean cyst development occurs approximately 10-15 years following a surgical or traumatic event. Some epithelial respiratory cells can be trapped into the bone tissue during maxillary surgical procedures or maxillary fractures. The pathogenetic mechanism can be attributed to an inflammatory process that stimulates epithelial proliferation, leading to cyst expansion caused by osmotic pressure difference. Methods: This study presents case series involving three surgical ciliated cysts located in the left maxilla, affecting two female patients (aged 49 and 55 years) and one male patient (aged 39 years). In all three cases, symptoms such as pain or swelling were mild and not consistently present. Two cases showed cyst development 10 and 15 years after implant placement, while one case was not associated with any surgical or traumatic event. CT scan identified well-defined unilocular lesions in the maxillary bone in each patient. Results: Histopathological examination of the surgical specimens confirmed the suspected diagnosis of a PSCC of maxilla. The cystic walls consisted of fibrous connective tissue with chronic inflammatory infiltrate, lined exclusively by a thin layer of ciliated pseudostratified columnar epithelium. In the third patient, it was not possible to rule out an unusual radicular cyst. Conclusions: Although PSCCs are not commonly encountered in daily practice, clinicians should consider this possibility including it in the differential diagnosis of odontogenic jaw cysts and benign jaw tumors, particularly in patients who have undergone previous surgeries in the maxillary area.

7.
Front Bioinform ; 4: 1329144, 2024.
Article in English | MEDLINE | ID: mdl-38638123

ABSTRACT

Introduction: DNA methylation, specifically the formation of 5-methylcytosine at the C5 position of cytosine, undergoes reproducible changes as organisms age, establishing it as a significant biomarker in aging studies. Epigenetic clocks, which integrate methylation patterns to predict age, often employ linear models based on penalized regression, yet they encounter challenges in handling missing data, count-based bisulfite sequence data, and interpretation. Methods: To address these limitations, we introduce BayesAge, an extension of the scAge methodology originally designed for single-cell DNA methylation analysis. BayesAge employs maximum likelihood estimation (MLE) for age inference, models count data using binomial distributions, and incorporates LOWESS smoothing to capture non-linear methylation-age dynamics. This approach is tailored for bulk bisulfite sequencing datasets. Results: BayesAge demonstrates superior performance compared to scAge. Notably, its age residuals exhibit no age association, offering a less biased representation of epigenetic age variation across populations. Furthermore, BayesAge facilitates the estimation of error bounds on age inference. When applied to down-sampled data, BayesAge achieves a higher coefficient of determination between predicted and actual ages compared to both scAge and penalized regression. Discussion: BayesAge presents a promising advancement in epigenetic age prediction, addressing key challenges encountered by existing models. By integrating robust statistical techniques and tailored methodologies for count-based data, BayesAge offers improved accuracy and interpretability in predicting age from bulk bisulfite sequencing datasets. Its ability to estimate error bounds enhances the reliability of age inference, thereby contributing to a more comprehensive understanding of epigenetic aging processes.

8.
Cancer Med ; 13(9): e7212, 2024 May.
Article in English | MEDLINE | ID: mdl-38686626

ABSTRACT

BACKGROUND: A phase I clinical study for patients with locally advanced H&N cancer with a new class of botanical drug APG-157 provided hints of potential synergy with immunotherapy. We sought to evaluate the efficacy of the combination of APG-157 and immune checkpoint inhibitors. METHODS: CCL23, UM-SCC1 (human), and SCCVII (HPV-), MEER (HPV+) (murine) H&N cancer cell lines were utilized for in vitro and in vivo studies. We measured tumor growth by treating the mice with APG-157, anti-PD-1, and anti-CTLA-4 antibody combinations (8 groups). The tumor microenvironments were assessed by multi-color flow cytometry, immunohistochemistry, and RNA-seq analysis. Fecal microbiome was analyzed by 16S rRNA sequence. RESULTS: Among the eight treatment groups, APG-157 + anti-CTLA-4 demonstrated the best tumor growth suppression (p = 0.0065 compared to the control), followed by anti-PD-1 + anti-CTLA-4 treatment group (p = 0.48 compared to the control). Immunophenotype showed over 30% of CD8+ T cells in APG-157 + anti-CTLA-4 group compared to 4%-5% of CD8+ T cells for the control group. Differential gene expression analysis revealed that APG-157 + anti-CTLA-4 group showed an enriched set of genes for inflammatory response and apoptotic signaling pathways. The fecal microbiome analysis showed a substantial difference of lactobacillus genus among groups, highest for APG-157 + anti-CTLA-4 treatment group. We were unable to perform correlative studies for MEER model as there was tumor growth suppression with all treatment conditions, except for the untreated control group. CONCLUSIONS: The results indicate that APG-157 and immune checkpoint inhibitor combination treatment could potentially lead to improved tumor control.


Subject(s)
CTLA-4 Antigen , Head and Neck Neoplasms , Immune Checkpoint Inhibitors , Tumor Microenvironment , Animals , Mice , CTLA-4 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Humans , Female , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Disease Models, Animal
9.
STAR Protoc ; 5(2): 103044, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678572

ABSTRACT

The amnion is a thin layer of fetal origin in contact with the amniotic fluid which plays a key role at the feto-maternal interface during pregnancy. Here, we present a protocol for isolation of human and Rhesusmacaque amnion cells. We describe steps for tissue dissection, cell isolation for flow cytometry analysis, and RNA isolation for RNA sequencing library preparation and analysis. This protocol can provide insights into altered immunological pathways during intrauterine infections to develop new therapeutic strategies. For complete details on the use and execution of this protocol, please refer to Presicce et al.1.

10.
Cancer Res Commun ; 4(3): 876-894, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38445960

ABSTRACT

IDH1mut gliomas produce high levels of D-2-hydroxyglutarate (D-2-HG), an oncometabolite capable of inhibiting α-ketoglutarate-dependent dioxygenases critical to a range of cellular functions involved in gliomagenesis. IDH1mut gliomas also exhibit slower growth rates and improved treatment sensitivity compared with their IDH1wt counterparts. This study explores the mechanism driving apparent reduced growth in IDH1mut gliomas. Specifically, we investigated the relationship between IDH1mut and the RNA N6-methyladenosine (m6A) demethylases FTO and ALKBH5, and their potential for therapeutic targeting. We investigated the role of D-2-HG and m6A in tumor proliferation/viability using glioma patient tumor samples, patient-derived gliomaspheres, and U87 cells, as well as with mouse intracranial IDH1wt gliomasphere xenografts. Methylation RNA immunoprecipitation sequencing (MeRIP-seq) RNA sequencing was used to identify m6A-enriched transcripts in IDH1mut glioma. We show that IDH1mut production of D-2-HG is capable of reducing glioma cell growth via inhibition of the m6A epitranscriptomic regulator, FTO, with resultant m6A hypermethylation of a set of mRNA transcripts. On the basis of unbiased MeRIP-seq epitranscriptomic profiling, we identify ATF5 as a hypermethylated, downregulated transcript that potentially contributes to increased apoptosis. We further demonstrate how targeting this pathway genetically and pharmacologically reduces the proliferative potential of malignant IDH1wt gliomas, both in vitro and in vivo. Our work provides evidence that selective inhibition of the m6A epitranscriptomic regulator FTO attenuates growth in IDH1wt glioma, recapitulating the clinically favorable growth phenotype seen in the IDH1mut subtype. SIGNIFICANCE: We show that IDH1mut-generated D-2-HG can reduce glioma growth via inhibition of the m6A demethylase, FTO. FTO inhibition represents a potential therapeutic target for IDH1wt gliomas and possibly in conjunction with IDH1mut inhibitors for the treatment of IDH1mut glioma. Future studies are necessary to demonstrate the role of ATF5 downregulation in the indolent phenotype of IDH1mut gliomas, as well as to identify other involved gene transcripts deregulated by m6A hypermethylation.


Subject(s)
Adenine/analogs & derivatives , Glioma , Glutarates , Humans , Animals , Mice , Glioma/drug therapy , RNA/metabolism , RNA, Messenger/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
11.
Nat Methods ; 21(3): 391-400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374264

ABSTRACT

Deciphering cell-type heterogeneity is crucial for systematically understanding tissue homeostasis and its dysregulation in diseases. Computational deconvolution is an efficient approach for estimating cell-type abundances from a variety of omics data. Despite substantial methodological progress in computational deconvolution in recent years, challenges are still outstanding. Here we enlist four important challenges related to computational deconvolution: the quality of the reference data, generation of ground truth data, limitations of computational methodologies, and benchmarking design and implementation. Finally, we make recommendations on reference data generation, new directions of computational methodologies, and strategies to promote rigorous benchmarking.


Subject(s)
Computational Biology , Genomics , Computational Biology/methods , Benchmarking
12.
Cancer Res Commun ; 4(3): 706-722, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38421310

ABSTRACT

Gigaxonin is an E3 ubiquitin ligase that plays a role in cytoskeletal stability. Its role in cancer is not yet clearly understood. Our previous studies of head and neck cancer had identified gigaxonin interacting with p16 for NFκB ubiquitination. To explore its role in cancer cell growth suppression, we analyzed normal and tumor DNA from cervical and head and neck cancers. There was a higher frequency of exon 8 SNP (c.1293 C>T, rs2608555) in the tumor (46% vs. 25% normal, P = 0.011) pointing to a relationship to cancer. Comparison of primary tumor with recurrence and metastasis did not reveal a statistical significance. Two cervical cancer cell lines, ME180 and HT3 harboring exon 8 SNP and showing T allele expression correlated with higher gigaxonin expression, reduced in vitro cell growth and enhanced cisplatin sensitivity in comparison with C allele expressing cancer cell lines. Loss of gigaxonin expression in ME180 cells through CRISPR-Cas9 or siRNA led to aggressive cancer cell growth including increased migration and Matrigel invasion. The in vitro cell growth phenotypes were reversed with re-expression of gigaxonin. Suppression of cell growth correlated with reduced Snail and increased e-cadherin expression. Mouse tail vein injection studies showed increased lung metastasis of cells with low gigaxonin expression and reduced metastasis with reexpression of gigaxonin. We have found an association between C allele expression and RNA instability and absence of multimeric protein formation. From our results, we conclude that gigaxonin expression is associated with suppression of epithelial-mesenchymal transition through inhibition of Snail. SIGNIFICANCE: Our results suggest that GAN gene exon 8 SNP T allele expression correlates with higher gigaxonin expression and suppression of aggressive cancer cell growth. There is downregulation of Snail and upregulation of e-cadherin through NFκB ubiquitination. We hypothesize that exon 8 T allele and gigaxonin expression could serve as diagnostic markers of suppression of aggressive growth of head and neck cancer.


Subject(s)
Head and Neck Neoplasms , Humans , Animals , Mice , Down-Regulation/genetics , Cell Line, Tumor , Head and Neck Neoplasms/drug therapy , Epithelial-Mesenchymal Transition/genetics , Cadherins/genetics
13.
Nat Commun ; 15(1): 210, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172207

ABSTRACT

Systemic sclerosis (SSc) is a devastating autoimmune disease characterized by excessive production and accumulation of extracellular matrix, leading to fibrosis of skin and other internal organs. However, the main cellular participants in SSc skin fibrosis remain incompletely understood. Here using differentiation trajectories at a single cell level, we demonstrate a dual source of extracellular matrix deposition in SSc skin from both myofibroblasts and endothelial-to-mesenchymal-transitioning cells (EndoMT). We further define a central role of Hippo pathway effectors in differentiation and homeostasis of myofibroblast and EndoMT, respectively, and show that myofibroblasts and EndoMTs function as central communication hubs that drive key pro-fibrotic signaling pathways in SSc. Together, our data help characterize myofibroblast differentiation and EndoMT phenotypes in SSc skin, and hint that modulation of the Hippo pathway may contribute in reversing the pro-fibrotic phenotypes in myofibroblasts and EndoMTs.


Subject(s)
Hippo Signaling Pathway , Scleroderma, Systemic , Humans , Fibrosis , Scleroderma, Systemic/pathology , Myofibroblasts/metabolism , Endothelial Cells/metabolism , Skin/pathology , Fibroblasts/metabolism
14.
Curr Protoc ; 4(1): e960, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38206591

ABSTRACT

Protein display systems are powerful techniques used to identify protein molecules that bind with high affinity to target proteins of interest. The initial challenge in implementing a display system is the construction of a high-diversity naïve library. Here, we describe the methods to generate a designed ankyrin repeat protein (DARPin) display library using degenerate oligonucleotides. Specifically described is the construction of a single DARPin repeat module by overlap extension PCR, concatenation of the module by restriction enzyme digestion and ligation, and incorporation of the concatenated modules into a full-length DARPin sequence in a bacterial cloning or display vector containing the hydrophilic N- and C-terminal capping domains. Protocols for PCR amplification of DARPin sequences to estimate diversity of naïve and enriched libraries via next-generation sequencing are included, as is a simple Linux-based program for analysis of naïve and enriched sequences. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of a single DARPin repeat by overlap extension PCR Basic Protocol 2: Concatenation of DARPin repeats Basic Protocol 3: Ligation of internal repeats into cloning/display vector containing N- and C-terminal capping repeats Basic Protocol 4: Estimation of library size and diversity by next-generation sequencing (NGS) Basic Protocol 5: NGS analysis of naïve and enriched libraries.


Subject(s)
Designed Ankyrin Repeat Proteins , Gastrointestinal Agents , Gene Library , DNA Restriction Enzymes , High-Throughput Nucleotide Sequencing
15.
Sci Rep ; 14(1): 1455, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38228690

ABSTRACT

Influenza virus infection alters the promoter DNA methylation of key immune response-related genes, including type-1 interferons and proinflammatory cytokines. However, less is known about the effect of the influenza vaccine on the epigenome. We utilized a targeted DNA methylation approach to study the longitudinal effects (day 0 pre-vaccination and day 28 post-vaccination) on influenza vaccination responses in peripheral blood mononuclear cells. We found that baseline, pre-vaccination methylation profiles are associated with pre-existing, protective serological immunity. Additionally, we identified 481 sites that were differentially methylated between baseline and day 28 post-vaccination. These were enriched for genes involved in the regulation of the RIG-I signaling pathway, an important regulator of viral responses. Our results suggest that DNA methylation changes to components of the RIG-I pathway are associated with vaccine effectiveness. Therefore, immunization strategies that target this pathway may improve serological responses to influenza vaccination.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , DNA Methylation , Influenza, Human/prevention & control , Leukocytes, Mononuclear , Vaccination/methods , DEAD Box Protein 58/genetics , Signal Transduction , Antibodies, Viral
16.
J Clin Invest ; 134(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38051587

ABSTRACT

Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by abscesses, nodules, dissecting/draining tunnels, and extensive fibrosis. Here, we integrate single-cell RNA sequencing, spatial transcriptomics, and immunostaining to provide an unprecedented view of the pathogenesis of chronic HS, characterizing the main cellular players and defining their interactions. We found a striking layering of the chronic HS infiltrate and identified the contribution of 2 fibroblast subtypes (SFRP4+ and CXCL13+) in orchestrating this compartmentalized immune response. We further demonstrated the central role of the Hippo pathway in promoting extensive fibrosis in HS and provided preclinical evidence that the profibrotic fibroblast response in HS can be modulated through inhibition of this pathway. These data provide insights into key aspects of HS pathogenesis with broad therapeutic implications.


Subject(s)
Hidradenitis Suppurativa , Humans , Hidradenitis Suppurativa/genetics , Hippo Signaling Pathway , Fibrosis
17.
J Theor Biol ; 579: 111697, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38142045

ABSTRACT

The association of DNA methylation with age has been extensively studied. Previous work has investigated the trajectories of methylation with age, and developed predictive biomarkers of age. However, we still have a limited understanding of the functional form of methylation-age dynamics. To address this we present a theoretical framework to model the dynamics of DNA methylation at single sites. We show that this model leads to convergence to a steady-state methylation level at an exponential rate. By fitting the model to a dataset that measures changes in DNA methylation in the brain from birth to old age, we show that the timescales of this exponential convergence are heterogeneous across sites. To model this heterogeneity we generated a simulation of CpG Methylation changes with time and investigated the functional form of the dynamics of methylation with age under the empirical distribution of timescales estimated from the dataset. The resulting dynamics of the average methylation of the system were characterized and were found to closely follow an exponential trajectory. We conclude that DNA methylation can be modeled as a system that starts out of equilibrium at birth and approaches equilibrium with age in an exponential fashion. These insights illustrate the importance of accounting for nonlinear dynamics when utilizing age associated DNA methylation changes for constructing biomarkers of aging. Thus DNA methylation, along with the exponentially increasing risk of mortality with age, further establishes the exponential nature of aging.


Subject(s)
DNA Methylation , Epigenesis, Genetic , CpG Islands/genetics , Biomarkers
18.
Crit Care ; 27(1): 486, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066613

ABSTRACT

BACKGROUND: Sepsis is a highly heterogeneous syndrome, which has hindered the development of effective therapies. This has prompted investigators to develop a precision medicine approach aimed at identifying biologically homogenous subgroups of patients with septic shock and critical illnesses. Transcriptomic analysis can identify subclasses derived from differences in underlying pathophysiological processes that may provide the basis for new targeted therapies. The goal of this study was to elucidate pathophysiological pathways and identify pediatric septic shock subclasses based on whole blood RNA expression profiles. METHODS: The subjects were critically ill children with cardiopulmonary failure who were a part of a prospective randomized insulin titration trial to treat hyperglycemia. Genome-wide expression profiling was conducted using RNA sequencing from whole blood samples obtained from 46 children with septic shock and 52 mechanically ventilated noninfected controls without shock. Patients with septic shock were allocated to subclasses based on hierarchical clustering of gene expression profiles, and we then compared clinical characteristics, plasma inflammatory markers, cell compositions using GEDIT, and immune repertoires using Imrep between the two subclasses. RESULTS: Patients with septic shock depicted alterations in innate and adaptive immune pathways. Among patients with septic shock, we identified two subtypes based on gene expression patterns. Compared with Subclass 2, Subclass 1 was characterized by upregulation of innate immunity pathways and downregulation of adaptive immunity pathways. Subclass 1 had significantly worse clinical outcomes despite the two classes having similar illness severity on initial clinical presentation. Subclass 1 had elevated levels of plasma inflammatory cytokines and endothelial injury biomarkers and demonstrated decreased percentages of CD4 T cells and B cells and less diverse T cell receptor repertoires. CONCLUSIONS: Two subclasses of pediatric septic shock patients were discovered through genome-wide expression profiling based on whole blood RNA sequencing with major biological and clinical differences. Trial Registration This is a secondary analysis of data generated as part of the observational CAF-PINT ancillary of the HALF-PINT study (NCT01565941). Registered March 29, 2012.


Subject(s)
Sepsis , Shock, Septic , Child , Humans , Gene Expression Profiling , Prospective Studies , Sepsis/genetics , Shock, Septic/therapy , Transcriptome , Randomized Controlled Trials as Topic , Observational Studies as Topic
19.
Dent J (Basel) ; 11(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38132418

ABSTRACT

AIM: Polydeoxyribonucleotide (PDRN) is a chain-like polymer derived from DNA. Recent in vitro and animal studies have showcased the beneficial impacts of PDRN on the process of bone mending, whether used on its own or in conjunction with other substances that aid in regeneration. This scoping review aims to synthesize the current understanding of how PDRNs influence bone healing. MATERIALS AND METHODS: The studies included in the screening procedure were randomized controlled clinical trials (RCTs), both retrospective and prospective case-control studies, as well as in vitro and in vivo investigations. Articles were sourced from PubMed (MEDLINE), Scopus, EMBASE, Web of Science, and Google Scholar electronic databases using the following MeSH terms: (polydeoxyribonucleotide) and (bone) and (regeneration). RESULTS: Initially, 228 articles were identified. Following the review process, a total of eight studies were ultimately examined. Among these, two were confined to laboratory studies, five were conducted on living organisms, and one encompassed both evaluations on living organisms and in vitro assessments. A descriptive qualitative approach was employed to present the data extracted from the studies that were included. CONCLUSIONS: PDRN has the potential to enhance the process of bone healing and the quantity of newly generated bone when combined with grafting materials. Future clinical studies are warranted to ascertain the appropriate clinical application of PDRN based on the dosage under consideration.

20.
Cancers (Basel) ; 15(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38136414

ABSTRACT

Fasting mimicking diets (FMDs) are effective in the treatment of many solid tumors in mouse models, but their effect on hematologic malignancies is poorly understood, particularly in combination with standard therapies. Here we show that cycles of a 3-day FMD given to high-fat-diet-fed mice once a week increased the efficacy of vincristine to improve survival from BCR-ABL B acute lymphoblastic leukemia (ALL). In mice fed a standard diet, FMD cycles in combination with vincristine promoted cancer-free survival. RNA seq and protein assays revealed a vincristine-dependent decrease in the expression of multiple autophagy markers, which was exacerbated by the fasting/FMD conditions. The autophagy inhibitor chloroquine could substitute for fasting/FMD to promote cancer-free survival in combination with vincristine. In vitro, targeted inhibition of autophagy genes ULK1 and ATG9a strongly potentiated vincristine's toxicity. Moreover, anti-CD8 antibodies reversed the effects of vincristine plus fasting/FMD in promoting leukemia-free survival in mice, indicating a central role of the immune system in this response. Thus, the inhibition of autophagy and enhancement of immune responses appear to be mediators of the fasting/FMD-dependent cancer-free survival in ALL mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...