Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(6): e0252325, 2021.
Article in English | MEDLINE | ID: mdl-34106956

ABSTRACT

Multiple mutations have been described in the human GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase) that degrades glucosylceramide and is pivotal in glycosphingolipid substrate metabolism. Depletion of GCase, typically by homozygous mutations in GBA1, is linked to the lysosomal storage disorder Gaucher's disease (GD) and distinct or heterozygous mutations in GBA1 are associated with increased Parkinson's disease (PD) risk. While numerous genes have been linked to heritable PD, GBA1 mutations in aggregate are the single greatest risk factor for development of idiopathic PD. The importance of GCase in PD necessitates preclinical models in which to study GCase-related mechanisms and novel therapeutic approaches, as well as to elucidate the molecular mechanisms leading to enhanced PD risk in GBA1 mutation carriers. The aim of this study was to develop and characterize a novel GBA1 mouse model and to facilitate wide accessibility of the model with phenotypic data. Herein we describe the results of molecular, biochemical, histological, and behavioral phenotyping analyses in a GBA1 D409V knock-in (KI) mouse. This mouse model exhibited significantly decreased GCase activity in liver and brain, with substantial increases in glycosphingolipid substrates in the liver. While no changes in the number of dopamine neurons in the substantia nigra were noted, subtle changes in striatal neurotransmitters were observed in GBA1 D409V KI mice. Alpha-synuclein pathology and inflammation were not observed in the nigrostriatal system of this model. In summary, the GBA1 D409V KI mouse model provides an ideal model for studies aimed at pharmacodynamic assessments of potential therapies aiming to restore GCase.


Subject(s)
Glucosylceramidase/metabolism , Glycosphingolipids/metabolism , Animals , Brain/metabolism , Female , Gene Knock-In Techniques , Glucosylceramidase/genetics , Immunoblotting , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parkinsonian Disorders/enzymology , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism , Point Mutation/genetics
2.
PLoS One ; 9(7): e102092, 2014.
Article in English | MEDLINE | ID: mdl-25036864

ABSTRACT

Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA. In this study, we examined the effect of AT2220 on mutant GAA, in vitro and in vivo, with a primary focus on the endoplasmic reticulum (ER)-retained P545L mutant form of human GAA (P545L GAA). AT2220 increased the specific activity of P545L GAA toward both natural (glycogen) and artificial substrates in vitro. Incubation with AT2220 also increased the ER export, lysosomal delivery, proteolytic processing, and stability of P545L GAA. In a new transgenic mouse model of Pompe disease that expresses human P545L on a Gaa knockout background (Tg/KO) and is characterized by reduced GAA activity and elevated glycogen levels in disease-relevant tissues, daily oral administration of AT2220 for 4 weeks resulted in significant and dose-dependent increases in mature lysosomal GAA isoforms and GAA activity in heart and skeletal muscles. Importantly, oral administration of AT2220 also resulted in significant glycogen reduction in disease-relevant tissues. Compared to daily administration, less-frequent AT2220 administration, including repeated cycles of 4 or 5 days with AT2220 followed by 3 or 2 days without drug, respectively, resulted in even greater glycogen reductions. Collectively, these data indicate that AT2220 increases the specific activity, trafficking, and lysosomal stability of P545L GAA, leads to increased levels of mature GAA in lysosomes, and promotes glycogen reduction in situ. As such, AT2220 may warrant further evaluation as a treatment for Pompe disease.


Subject(s)
1-Deoxynojirimycin/pharmacology , Glucan 1,4-alpha-Glucosidase/genetics , Glucan 1,4-alpha-Glucosidase/metabolism , Glycogen Storage Disease Type II/metabolism , Glycogen/metabolism , Lysosomes/drug effects , Mutation , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/pharmacokinetics , Administration, Oral , Animals , Biocatalysis/drug effects , Biological Availability , COS Cells , Chlorocebus aethiops , Disease Models, Animal , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Enzyme Stability/drug effects , Gene Knockout Techniques , Glucan 1,4-alpha-Glucosidase/biosynthesis , Glycogen Storage Disease Type II/enzymology , Glycogen Storage Disease Type II/pathology , Humans , Isoenzymes/biosynthesis , Isoenzymes/genetics , Isoenzymes/metabolism , Lysosomes/metabolism , Mice , Mice, Transgenic , Mutant Proteins/biosynthesis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Transport/drug effects , Proteolysis/drug effects
3.
PLoS One ; 7(7): e40776, 2012.
Article in English | MEDLINE | ID: mdl-22815812

ABSTRACT

Pompe disease is an inherited lysosomal storage disease that results from a deficiency in the enzyme acid α-glucosidase (GAA), and is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. Recombinant human GAA (rhGAA) is the only approved enzyme replacement therapy (ERT) available for the treatment of Pompe disease. Although rhGAA has been shown to slow disease progression and improve some of the pathophysiogical manifestations, the infused enzyme tends to be unstable at neutral pH and body temperature, shows low uptake into some key target tissues, and may elicit immune responses that adversely affect tolerability and efficacy. We hypothesized that co-administration of the orally-available, small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) may improve the pharmacological properties of rhGAA via binding and stabilization. AT2220 co-incubation prevented rhGAA denaturation and loss of activity in vitro at neutral pH and 37°C in both buffer and blood. In addition, oral pre-administration of AT2220 to rats led to a greater than two-fold increase in the circulating half-life of intravenous rhGAA. Importantly, co-administration of AT2220 and rhGAA to GAA knock-out (KO) mice resulted in significantly greater rhGAA levels in plasma, and greater uptake and glycogen reduction in heart and skeletal muscles, compared to administration of rhGAA alone. Collectively, these preclinical data highlight the potentially beneficial effects of AT2220 on rhGAA in vitro and in vivo. As such, a Phase 2 clinical study has been initiated to investigate the effects of co-administered AT2220 on rhGAA in Pompe patients.


Subject(s)
1-Deoxynojirimycin/therapeutic use , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/enzymology , Glycogen/metabolism , Recombinant Proteins/metabolism , alpha-Glucosidases/metabolism , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/pharmacology , Animals , Buffers , Disease Models, Animal , Enzyme Activation/drug effects , Enzyme Stability/drug effects , Half-Life , Humans , Mice , Mice, Knockout , Protein Denaturation/drug effects , Rats , Recombinant Proteins/blood , alpha-Glucosidases/administration & dosage , alpha-Glucosidases/blood
4.
Mol Ther ; 20(4): 717-26, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22215019

ABSTRACT

Fabry disease is an X-linked lysosomal storage disorder (LSD) caused by mutations in the gene (GLA) that encodes the lysosomal hydrolase α-galactosidase A (α-Gal A), and is characterized by pathological accumulation of the substrate, globotriaosylceramide (GL-3). Regular infusion of recombinant human α-Gal A (rhα-Gal A), termed enzyme replacement therapy (ERT), is the primary treatment for Fabry disease. However, rhα-Gal A has low physical stability, a short circulating half-life, and variable uptake into different disease-relevant tissues. We hypothesized that coadministration of the orally available, small molecule pharmacological chaperone AT1001 (GR181413A, 1-deoxygalactonojirimycin, migalastat hydrochloride) may improve the pharmacological properties of rhα-Gal A via binding and stabilization. AT1001 prevented rhα-Gal A denaturation and activity loss in vitro at neutral pH and 37 °C. Coincubation of Fabry fibroblasts with rhα-Gal A and AT1001 resulted in up to fourfold higher cellular α-Gal A and ~30% greater GL-3 reduction compared to rhα-Gal A alone. Furthermore, coadministration of AT1001 to rats increased the circulating half-life of rhα-Gal A by >2.5-fold, and in GLA knockout mice resulted in up to fivefold higher α-Gal A levels and fourfold greater GL-3 reduction than rhα-Gal A alone. Collectively, these data highlight the potentially beneficial effects of AT1001 on rhα-Gal A, thus warranting clinical investigation.


Subject(s)
Enzyme Replacement Therapy/methods , Fabry Disease/drug therapy , Oligopeptides/therapeutic use , Recombinant Proteins/therapeutic use , alpha-Galactosidase/therapeutic use , Animals , Blotting, Western , Fabry Disease/metabolism , Fluorescent Antibody Technique , Humans , Mice , Rats , Trihexosylceramides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...