Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 585(7823): 58-62, 2020 09.
Article in English | MEDLINE | ID: mdl-32879499

ABSTRACT

Scanning probe techniques can leverage atomically precise forces to sculpt matter at surfaces, atom by atom. These forces have been applied quasi-statically to create surface structures1-7 and influence chemical processes8,9, but exploiting local dynamics10-14 to realize coherent control on the atomic scale remains an intriguing prospect. Chemical reactions15-17, conformational changes18,19 and desorption20 have been followed on ultrafast timescales, but directly exerting femtosecond forces on individual atoms to selectively induce molecular motion has yet to be realized. Here we show that the near field of a terahertz wave confined to an atomically sharp tip provides femtosecond atomic-scale forces that selectively induce coherent hindered rotation in the molecular frame of a bistable magnesium phthalocyanine molecule. Combining lightwave-driven scanning tunnelling microscopy21-24 with ultrafast action spectroscopy10,13, we find that the induced rotation modulates the probability of the molecule switching between its two stable adsorption geometries by up to 39 per cent. Mapping the response of the molecule in space and time confirms that the force acts on the atomic scale and within less than an optical cycle (that is, faster than an oscillation period of the carrier wave of light). We anticipate that our strategy might ultimately enable the coherent manipulation of individual atoms within single molecules or solids so that chemical reactions and ultrafast phase transitions can be manipulated on their intrinsic spatio-temporal scales.

2.
Opt Lett ; 44(22): 5521-5524, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31730097

ABSTRACT

We present a robust, compact pulse synthesis scheme generating intense phase-locked subcycle multi-terahertz waveforms. The ultrabroadband laser fundamental is split into two parallel branches driving optical rectification in crystals of GaSe and LiGaS2, each operated at the group velocity matching point. The coherent combination of the resulting pulses yields a continuous multi-terahertz spectrum covering 1.5 optical octaves. The corresponding 0.8-cycle electric field waveform is directly mapped out by electro-optic sampling, revealing peak fields of 15 kV/cm at a repetition rate of 0.4 MHz. The multiplexable and power scalable scheme opens the door to strong-field custom-tailored waveforms driving nonlinear optics and light wave electronics.

3.
Opt Lett ; 42(21): 4367-4370, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29088165

ABSTRACT

We demonstrate a compact source of energetic and phase-locked multi-terahertz pulses at a repetition rate of 190 kHz. Difference frequency mixing of the fundamental output of an Yb:KGW amplifier with the idler of an optical parametric amplifier in GaSe and LiGaS2 crystals yields a passively phase-locked train of waveforms tunable between 12 and 42 THz. The shortest multi-terahertz pulses contain 1.8 oscillation cycles within the intensity full width at half-maximum. Pulse energies of up to 0.16 µJ and peak electric fields of 13 MV/cm are achieved. Electro-optic sampling reveals a phase stability better than 0.1 π over multiple hours, combined with free carrier-envelope phase tunability. The scalable scheme opens the door to strong-field terahertz optics at unprecedented repetition rates.

4.
Nature ; 539(7628): 263-267, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27830788

ABSTRACT

Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule's highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...