Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 7(6): 3687-3700, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38776103

ABSTRACT

Multifunctional nanofibrous architectures have attracted extensive attention for biomedical applications due to their adjustable and versatile properties. Electrospun fabrics stand out as key building blocks for these structures, yet improving their mechanobiological and physicochemical performance is a challenge. Here, we introduce biodegradable engineered hydrophobic/hydrophilic scaffolds consisting of electrospun polylactide nanofibers coated with drug-eluting synthetic (poly(vinyl alcohol)) and natural (starch) polymers. The microstructure of these composite scaffolds was tailored for an increased hydrophilicity, optimized permeability, water retention capacity of up to 5.1 g/g, and enhanced mechanical properties under both dry and wet conditions. Regarding the latter, normalized tensile strengths of up to 32.4 MPa were achieved thanks to the improved fiber interactions and fiber-coating stress transfer. Curcumin was employed as a model drug, and its sustained release in a pure aqueous medium was investigated for 35 days. An in-depth study of the release kinetics revealed the outstanding water solubility and bioavailability of curcumin, owing to its complexation with the hydrophilic polymers and further delineated the role of the hydrophobic nanofibrous network in regulating its release rate. The modified curcumin endowed the composites with antioxidant activities up to 5.7 times higher than that of free curcumin as well as promising anti-inflammatory and bacteriostatic activities. The cytocompatibility and cell proliferation capability on human dermal fibroblasts also evidenced the safe use of the constructs. Finally, the fabrics present pH-responsive color-changing behavior easily distinguishable within the pH range of 5-9. Thus, these designs offer a facile and cost-effective roadmap for the fabrication of smart multifunctional biomaterials, especially for chronic wound healing.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Biocompatible Materials , Curcumin , Hydrophobic and Hydrophilic Interactions , Materials Testing , Nanofibers , Nanofibers/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Curcumin/chemistry , Curcumin/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Particle Size , Microbial Sensitivity Tests , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Polyesters/chemistry , Cell Survival/drug effects , Fibroblasts/drug effects
2.
ACS Appl Bio Mater ; 7(1): 124-130, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38109902

ABSTRACT

Copper-chlorophyllin is a water-soluble derivative of chlorophylls and shows low cytotoxicity and antimutagenic properties in cultured cells. It has multiple applications, including its use as a photosensitizer in photothermal therapy because of its green light-activated photothermal performance. In this work, it was copolymerized with a poly(ethylene glycol) methacrylic monomer to yield random copolymers by free radical polymerization, which showed dual temperature- and pH-dependent phase transitions in aqueous solutions. The cloud points of the copolymer solutions were raised by lowering the pH of the aqueous solutions due to the protonation of the carboxylic groups on the chlorophyllin moieties, which decreased the overall hydrophilicity of the polymers. At low pH values, complete protonation of the carboxylic acid groups of the chlorophyllin moieties led to an irreversible aggregation of the copolymers in water. The incorporation of chlorophyllin in the copolymer improved its stability over its single molecular form.


Subject(s)
Chlorophyllides , Polymers , Polymers/pharmacology , Polymers/chemistry , Polyethylene Glycols/chemistry , Water
3.
Appl Spectrosc ; 77(11): 1289-1299, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37774683

ABSTRACT

Electrospun fibers of amorphous or low-crystallinity polymers typically exhibit a low molecular orientation that can hamper their properties and application. A key stage of the electrospinning process that could be harnessed to mitigate the loss of orientation is jet rigidification, which relates closely to the solvent evaporation rate. Here, we establish quantitative Raman methods to assess the molecular orientation and crystallinity of weakly crystalline poly(2,6-dimethyl-1,4-phenylene oxide) fibers with varying diameters. Our findings demonstrate that solvent volatility can be leveraged to modulate the orientation and crystallinity through its impact on the effective glass transition temperature (Tg,eff) of the polymer jet during the electrospinning process. Specifically, a highly volatile solvent yields a higher and more sustained orientation (median ⟨P2⟩ of 0.53 for diameters < 1.0 µm) because its fast evaporation rapidly increases Tg,eff above room temperature. This vitrification early along the jet path promotes the formation of an oriented amorphous phase and a moderate fraction of strain-induced crystals. Our data reveals that a high Tg is a crucial parameter for reaching high orientation in amorphous or low-crystallinity polymer systems.

4.
Appl Spectrosc ; 76(1): 51-60, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34643130

ABSTRACT

*These authors contributed equally.Electrospun fibers often exhibit enhanced properties at reduced diameters, a characteristic now widely attributed to a high molecular orientation of the polymer chains along the fiber axis. A parameter that can affect the molecular organization is the type of collector onto which fibers are electrospun. In this work, we use polarized confocal Raman spectromicroscopy to determine the incidence of the three most common types of collectors on the molecular orientation and structure in individual fibers of a broad range of diameters. Poly(ethylene terephthalate) is used as a model system for fibers of weakly crystalline polymers. A clear correlation emerges between the choice of collector, the induced molecular orientation, the fraction of trans conformers, and the degree of crystallinity within fibers. Quantitative structural information gathered by Raman contributes to a general description of the mechanism of action of the collectors based on the additional strain they exert on the forming fibers.

5.
J Phys Chem B ; 125(28): 7871-7885, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34255516

ABSTRACT

As part of continuing efforts to deepen the understanding of photo-induced mass transport in azo-containing polymers, we compared the diffraction efficiency (DE) during surface-relief grating (SRG) inscription, photo-induced molecular orientation (), and thermal stability in two sets of supramolecular azopolymer complexes, namely, hydrogen-bonded (H-bonded) and ionically bonded (i-bonded) complexes, both as a function of the polymer degree of polymerization (DP). To that end, poly(4-vinylpyridine) (P4VP) polymers with DPs of 41, 480, and 1900 were H-bonded at an equimolar ratio with 4-hydroxy-4'-dimethylaminoazobenzene (azoOH), and the fully quaternized derivatives of the three P4VPs (P4VPMe) were i-bonded via ion exchange to sodium 4-[(4-dimethylamino)-phenylazo]benzene sulfonate (azoSO3), also known as methyl orange, where the OH functionality of azoOH is replaced by a sulfonate group. The i-bonded complexes show much better DE performances and levels than those of H-bonded complexes, which we relate to the liquid crystal structure of the former complexes. Fitting the curves by a biexponential equation leads to two parameters associated with a fast trans-cis or angular hole burning (AHB) process and a slow angular redistribution (AR) process of the azo, respectively. It is found that AHB is predominant in the H-bonded complexes, whereas the AR contribution is much greater in the i-bonded complexes, assuring their superior SRG efficiency that is enabled by the anisotropic free volume created mainly by the AR process. In each set of complexes, the SRG efficiency is much better for the lowest DP complex, while the AR contribution is constant (and low) for the H-bonded complexes and increases roughly linearly with the decrease in DP for the i-bonded complexes. The latter difference might be related to the presence of entanglements in the complexes with DPs 480 and 1900, which slow down the macroscopic movement during SRG inscription but not the molecular-scale movement in photo-orientation.

6.
J Am Chem Soc ; 142(30): 13051-13061, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32597648

ABSTRACT

Elucidating the influence of the monolayer interface versus bulk on the macroscopic properties (e.g., surface hydrophobicity, charge transport, and electron transfer) of organic self-assembled monolayers (SAMs) chemically anchored to metal surfaces is a challenge. This article reports the characterization of prototypical SAMs of n-alkanethiolates on gold (CH3(CH2)nSAu, n = 6-19) at the macroscopic scale by electrochemical impedance spectroscopy and contact angle goniometry, and at the molecular level, by infrared reflection absorption spectroscopy. The SAM capacitance, dielectric constant, and surface hydrophobicity exhibit dependencies on both the length (n) and parity (nodd or neven) of the polymethylene chain. The peak positions of the CH2 stretching modes indicate a progressive increase in the chain conformational order with increasing n between n = 6 and 16. SAMs of nodd have a greater degree of structural gauche defects than SAMs of neven. The peak intensities and positions of the CH3 stretching modes are chain length independent but show an odd-even alternation of the spatial orientation of the terminal CH3. The correlations between the different data trends establish that the chain length dependencies of the dielectric constant and surface hydrophobicity originate from changes in the polymethylene chain conformation (bulk), while the odd-even variation arises primarily from a difference in the chemical composition of the interface related to the terminal group orientation. These findings provide new physical insights into the structure-property relation of SAMs for the design of ultrathin film dielectrics as well as the understanding of stereostructural effects on the electrical characteristics of tunnel junctions.

7.
Langmuir ; 35(30): 9912-9922, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31277548

ABSTRACT

Knowledge of the thermotropic phase behavior of solid-supported bilayer lipid assemblies is essential to mimick the molecular organization and lateral fluidity of cell membranes. The gel-to-fluid phase transitions in a homologous series of single phospholipid bilayers supported on planar silicon substrates were investigated by temperature-controlled atomic force microscopy and attenuated total reflection infrared spectroscopy to obtain complementary information at the mesoscopic and molecular scales. Symmetric bilayers of dipalmitoylphosphatidylcholine (DPPC) and vertically asymmetric bilayers composed of a leaflet of DPPC and another of acyl-chain-deuterated DPPC (DPPC-d62) were prepared by the Langmuir-Blodgett technique. The selective deuteration of one of the bilayer leaflets enabled the simultaneous monitoring by IR spectroscopy of the acyl chain melting in each leaflet via the spectrally isolated CH2 and CD2 stretching vibrations. Two gel-to-fluid transitions were discerned for both the symmetric and asymmetric bilayers in ultrapure water. The deuterium isotope effect observed in free-standing membranes was maintained for the supported bilayers. IR spectroscopy revealed that the melting of one leaflet promotes the disordering of the acyl chains in the adjacent one. The findings suggest that the two leaflet phase transitions do not evolve in isolation. This work sheds insight into the nature of leaflet-leaflet interactions and the thermodynamic properties of surface-confined phospholipid bilayers.

8.
ACS Nano ; 13(5): 4893-4927, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31038925

ABSTRACT

Advanced fibers revolutionized structural materials in the second half of the 20th century. However, all high-strength fibers developed to date are brittle. Recently, pioneering simultaneous ultrahigh strength and toughness were discovered in fine (<250 nm) individual electrospun polymer nanofibers (NFs). This highly desirable combination of properties was attributed to high macromolecular chain alignment coupled with low crystallinity. Quantitative analysis of the degree of preferred chain orientation will be crucial for control of NF mechanical properties. However, quantification of supramolecular nanoarchitecture in NFs with low crystallinity in the ultrafine diameter range is highly challenging. Here, we discuss the applicability of traditional as well as emerging methods for quantification of polymer chain orientation in nanoscale one-dimensional samples. Advantages and limitations of different techniques are critically evaluated on experimental examples. It is shown that straightforward application of some of the techniques to sub-wavelength-diameter NFs can lead to severe quantitative and even qualitative artifacts. Sources of such size-related artifacts, stemming from instrumental, materials, and geometric phenomena at the nanoscale, are analyzed on the example of polarized Raman method but are relevant to other spectroscopic techniques. A proposed modified, artifact-free method is demonstrated. Outstanding issues and their proposed solutions are discussed. The results provide guidance for accurate nanofiber characterization to improve fundamental understanding and accelerate development of nanofibers and related nanostructured materials produced by electrospinning or other methods. We expect that the discussion in this review will also be useful to studies of many biological systems that exhibit nanofilamentary architectures and combinations of high strength and toughness.


Subject(s)
Nanofibers/chemistry , Polymers/chemistry , Artifacts , Calorimetry, Differential Scanning , Crystallization , Nanofibers/ultrastructure , Spectrum Analysis, Raman
9.
Macromol Rapid Commun ; 39(1)2018 Jan.
Article in English | MEDLINE | ID: mdl-28895251

ABSTRACT

Exciting new applications, from large-area nanopatterning and templating to soft light-powered robotics, are emerging from the fundamental research on light-triggered changes in macromolecular systems upon photoisomerization of azobenzene-based molecular photoswitches. The understanding of how the initial molecular-scale photoisomerization of azobenzene, a complex photochemical event in itself, is translated into the response of macromolecules and even into macroscopic-scale motion of illuminated azomaterials is an enormous task. The focus here is on how this knowledge has advanced by applying different vibrational spectroscopy techniques that provide rich molecular insight into the photoresponse of chemically specific molecular moieties. In particular, infrared and Raman spectroscopy studies are highlighted, in the context of phototriggered perturbation of self-assembled structures and photoinduced linear and circular anisotropy, as well as photoinduced surface patterning, with the objective of offering a perspective on how vibrational spectroscopy can help in answering an array of essential yet unsettled questions.


Subject(s)
Light , Macromolecular Substances/chemistry , Particle Size , Photochemical Processes , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
10.
J Exp Biol ; 220(Pt 6): 984-994, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28153979

ABSTRACT

Several bivalve species produce byssus threads to provide attachment to substrates, with mechanical properties highly variable among species. Here, we examined the distal section of byssal threads produced by a range of bivalve species (Mytilus edulis, Mytilus trossulus, Mytilus galloprovincialis, Mytilus californianus, Pinna nobilis, Perna perna, Xenostrobus securis, Brachidontes solisianus and Isognomon bicolor) collected from different nearshore environments. Morphological and mechanical properties were measured, and biochemical analyses were performed. Multivariate redundancy analyses on mechanical properties revealed that byssal threads of M. californianus, M. galloprovincialis and P. nobilis have very distinct mechanical behaviours compared with the remaining species. Extensibility, strength and force were the main variables separating these species groups, which were highest for M. californianus and lowest for P. nobilis Furthermore, the analysis of the amino acid composition revealed that I. bicolor and P. nobilis threads are significantly different from the other species, suggesting a different underlying structural strategy. Determination of metal contents showed that the individual concentration of inorganic elements varies, but that the dominant elements are conserved between species. Altogether, this bivalve species comparison suggests some molecular bases for the biomechanical characteristics of byssal fibres that may reflect phylogenetic limitations.


Subject(s)
Amino Acids/analysis , Bivalvia/chemistry , Bivalvia/ultrastructure , Metals/analysis , Animals , Biomechanical Phenomena , Bivalvia/anatomy & histology , Species Specificity
11.
J Phys Chem B ; 121(10): 2350-2358, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28218856

ABSTRACT

It has recently been established that physical vapor deposition (PVD) can produce organic glasses with enhanced kinetic stability, high density, and anisotropic packing, with the substrate temperature during deposition (Tsubstrate) as the key control parameter. The influence of hydrogen bonding on the formation of PVD glasses has not been fully explored. Herein, we use a high-throughput preparation method to vapor-deposit three triazine derivatives over a wide range of Tsubstrate, from 0.69 to 1.08Tg, where Tg is the glass transition temperature. These model systems are structural analogues containing a functional group with different H-bonding capability at the 2-position of a triazine ring: (1) 2-methylamino-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (NHMe) (H-bond donor), (2) 2-methoxy-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (OMe) (H-bond acceptor), and (3) 2-ethyl-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (Et) (none). Using spectroscopic ellipsometry, we find that the Et and OMe compounds form PVD glasses with relatively high kinetic stability, with the transformation time (scaled by the α-relaxation time) on the order of 103, comparable to other highly stable glasses formed by PVD. In contrast, PVD glasses of NHMe are only slightly more stable than the corresponding liquid-cooled glass. Using IR spectroscopy, we find that both the supercooled liquid and the PVD glasses of the NHMe derivative show a higher average number of bonded NH per molecule than that in the other two compounds. These results suggest that H-bonds hinder the formation of stable glasses, perhaps by limiting the surface mobility. Interestingly, despite this difference in kinetic stability, all three compounds show properties typically observed in highly stable glasses prepared by PVD, including a higher density and anisotropic molecular packing (as characterized by IR and wide-angle X-ray scattering).

12.
ACS Appl Mater Interfaces ; 9(1): 798-808, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-27976586

ABSTRACT

Irradiation of azomaterials causes various photophysical and photomechanical effects that can be exploited for the preparation of functional materials such as surface relief gratings (SRGs). Herein, we develop and apply an efficient strategy to optimize the SRG inscription process by decoupling, for the first time, the important effects of the azo content and glass transition temperature (Tg). We prepare blends of a photoactive molecular glass functionalized with the azo Disperse Red 1 (gDR1) with a series of analogous photopassive molecular glasses. Blends with 10 and 40 mol % of gDR1 are completely miscible, present very similar optical properties, and cover a wide range of Tg from below to well above ambient temperature. SRG inscription experiments show that the diffraction efficiency (DE), residual DE, and initial inscription rate reach a maximum when Tg is 25-40 °C above ambient temperature for low to high azo content, respectively. Indeed, for a fixed 40 mol % azo content, choosing the optimal Tg enables doubling the SRG inscription rate and increasing DE 6-fold. Moreover, a higher azo content enables higher DE for a similar Tg. Spectroscopy measurements indicate that the photo-orientation of DR1 and its thermal stability are maximal with Tg around 70 °C, independent of the azo content. We conclude that the SRG potential of azomaterials depends on their capability to photo-orient but that the matrix rigidity eventually limits the inscription kinetics, leading to an optimal Tg that depends on the azo content. This study exposes clear material design guidelines to optimize the SRG inscription process and the photoactivity of azomaterials.

13.
Biomacromolecules ; 17(10): 3277-3286, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27588337

ABSTRACT

The byssus that anchors mussels to solid surfaces is a protein-based material combining strength and toughness as well as a self-healing ability. These exceptional mechanical properties are explained in part by the presence of metal ions forming sacrificial bonds with amino acids. In this study, we show that the properties of hydrogel films prepared from a byssus protein hydrolyzate (BPH) can also be improved following the biomimetic formation of sacrificial bonds. Strengthening and toughening of the materials are both observed when treating films with multivalent ions (Ca2+ or Fe3+) or at the BPH isoelectric point (pI) as a result of the formation of metal-ligand bonds and salt bridges, respectively. These treatments also provide a self-healing behavior to the films during recovery time following a deformation. While pI and Ca2+ treatments have a similar but limited pH-dependent effect, the modulus, strength, and toughness of the films increase largely with Fe3+ concentration and reach much higher values. The affinity of Fe3+ with multiple amino acid ligands, as shown by vibrational spectroscopy, and the more covalent nature of this interaction can explain these observations. Thus, a judicious choice of treatments on polyampholyte protein-based materials enables control of their mechanical performance and self-healing behavior through the strategic exploitation of reversible sacrificial bonds.


Subject(s)
Amino Acids/chemistry , Metals/chemistry , Proteins/chemistry , Sodium Chloride/chemistry , Animals , Biomimetics , Bivalvia/chemistry , Ions/chemistry , Ligands , Mechanical Phenomena
14.
Phys Chem Chem Phys ; 18(3): 1681-92, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26675473

ABSTRACT

Mexylaminotriazine derivatives form molecular glasses with outstanding glass-forming ability (GFA), high resistance to crystallization (glass kinetic stability, GS), and a glass transition temperature (Tg) above room temperature that can be conveniently modulated by selection of the headgroup and ancillary groups. A common feature of all these compounds is their secondary amino linkers, suggesting that they play a critical role in their GFA and GS for reasons that remain unclear because they can simultaneously form hydrogen (H) bonds and lead to a high interconversion energy barrier between different rotamers. To investigate independently and better control the influence of H bonding capability and rotational energy barrier on Tg, GFA and GS, a library of twelve analogous molecules was synthesized with different combinations of NH, NMe and O linkers. Differential scanning calorimetry (DSC) revealed that these compounds form, with a single exception, kinetically stable glasses with Tg values spanning a very broad range from -25 to 94 °C. While variable temperature infrared spectroscopy combined to chemometrics reveals that, on average, around 60% of the NH groups are still H-bonded as high as 40 °C above Tg, critical cooling rates obtained by DSC clearly show that molecules without H-bond donating linkers also present an outstanding GFA, meaning that H bonding plays a dominant role in controlling Tg but is not required to prevent crystallization. It is a high interconversion energy barrier, provoking a distribution of rotamers, that most efficiently promotes both GFA and resistance to crystallization. These new insights pave the way to more efficient glass engineering by extending the possible range of accessible Tg, allowing in particular the preparation of homologous glass-formers with high GS at ambient temperature in either the viscous or vitreous state.

15.
J Am Chem Soc ; 137(42): 13510-7, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26439981

ABSTRACT

We demonstrate experimentally for the first time that the illumination of azobenzene derivatives leads to changes in molecular environment similar to those observed on heating but that are highly heterogeneous at the submolecular scale. This localized photoplasticization, which can be associated with a free volume gradient, helps to understand the puzzling phenomenon of photoinduced macroscopic material flow and photoexpansion upon illumination far below the glass transition temperature (T(g)). The findings stem from the correlation of infrared (IR) spectral band shifts measured upon illumination with those measured at controlled temperatures for two amorphous DR1-functionalized azo derivatives, a polymer, pDR1A, and a molecular glass, gDR1. This new approach reveals that IR spectroscopy can be used as an efficient label-free molecular-scale thermometer that allows the assignment of an effective temperature (T(eff)) to each moiety in these compounds when irradiated. While no band shift is observed upon illumination for the vibrational modes assigned to backbone moieties of pDR1A and gDR1 and a small band shift is found for the spacer moiety, dramatic band shifts are recorded for the azo moiety, corresponding to an increase in T(eff) of up to nearly 200 °C and a molecular environment that is equivalent to thermal heating well above the bulk T(g) of the material. An irradiated azo-containing material thus combines characteristic properties of amorphous materials both below and above its bulk T(g). The direct measurement of T(eff) is a powerful probe of the local environment at the submolecular scale, paving the way toward better rationalization of photoexpansion and the athermal malleability of azo-containing materials upon illumination below their T(g).

16.
ACS Macro Lett ; 4(10): 1158-1162, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-35614798

ABSTRACT

We demonstrate a unique combination of simultaneous top-down and bottom-up control of the morphology of block copolymer films by application of in situ optical irradiation during dip-coating. A light-addressable and block-selective small molecule, 4-butyl-4'-hydroxyazobenzene (BHAB), is introduced into a diblock copolymer of polystyrene and poly(4-vinylpyridine) (PS-P4VP) of 28.4 wt % P4VP via supramolecular chemistry, notably by hydrogen bonding to P4VP. We show that the spherical morphology of thin films dip-coated from a THF solution at slow withdrawal rates in the dark convert to cylindrical morphology when dip-coated under illumination. This is attributed to volume expansion of the P4VP/BHAB phase due to trans-cis photoisomerization combined with a light-induced increase in BHAB uptake in the film. The demonstrated photocontrol highlights the potential of dip-coating as a scalable film preparation method that can be easily coupled with external stimuli to direct nanostructured self-assembly in the films as solvent evaporates.

17.
J Mater Chem B ; 2(37): 6378-6386, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-32262154

ABSTRACT

The byssus is a series of collagen-rich fibers securing mussels to surfaces. The complex but elegant heterogeneous assembly of the various proteins in the threads is responsible for their remarkable mechanical properties combining strength and extensibility. Along with the well-known biocompatibility and biodegradability attributed to collagen-based materials, these mechanical properties are highly desirable to produce biomaterials for soft tissue engineering and drug delivery applications. In order to replicate the byssus natural features and properties, we prepared a soluble byssus protein hydrolyzate (BPH) that can generate water-insoluble self-standing films. Atomic force and scanning electron microscopy revealed the presence of self-assembled collagen-like fibrils at the surface of the films. Infrared spectroscopy analysis of the film formation showed that insolubility is caused by the self-assembly of polypeptides from the hydrolyzate into antiparallel ß-sheets, aggregated ß-strands and collagen triple-helix structures. The mechanical properties and water swelling measurements on the films can be reversibly pH-modulated by modifying the electrostatic interactions between the ∼30 mol% of charged amino acids. Optimal mechanical properties and minimum swelling are obtained at the isoelectric point (pH 4.5). Higher or lower pH treatment reversibly decreases their stiffness and strength and increases their swelling ratio. Altogether, our results show that byssus proteins are an interesting sustainable feedstock for preparing new solid-state pH-tuneable biomaterials.

18.
Appl Spectrosc ; 67(4): 409-19, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23601541

ABSTRACT

Polarized Raman spectroscopy is widely used to quantify the level of molecular orientation of various types of materials. By using a simplified procedure we call the depol (depolarization) constant (DC) method, since it assumes that the depolarization ratio is a constant. However, our ability to quantify orientation by using the DC method is often limited by the need for a completely isotropic sample showing the same chemical and phase composition as the oriented sample of interest to obtain information on the depolarization ratio. In this paper, we propose a new method for orientation quantification, the most probable distribution (MPD) method, based on the hypothesis that the population distribution is the most probable one. In contrast to the conventional DC procedure, this new method does not require knowledge of the depolarization ratio and eliminates the assumption that it does not evolve on orientation. Simulations show the wide applicability of the MPD method for large sections of the 〈P2〉 〈P4〉 diagram, especially for coordinates that are most likely to be observed in experimental conditions. They also highlight the significant inaccuracies produced by the conventional DC method due to depolarization ratio errors.

19.
Biomacromolecules ; 14(1): 132-41, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23163352

ABSTRACT

The molecular structure of the blue mussel Mytilus edulis whole anchoring threads was studied by two-dimensional (13)C solid-state NMR on fully labeled fibers. This unique material proves to be well ordered at a molecular level despite its heterogeneous composition as evidenced by the narrow measured linewidths below 1.5 ppm. The spectra are dominated by residues in collagen environments, as determined from chemical shift analysis, and a complete two-dimensional assignment (including minor amino acids) was possible. The best agreement between predicted and experimental backbone chemical shifts was obtained for collagen helices with torsion angles (-75°, +150°). The abundant glycine and alanine residues can be resolved in up to five different structural environments. Alanine peaks could be assigned to collagen triple-helices, ß-sheets (parallel and antiparallel), ß-turns, and unordered structures. The use of ATR-FTIR microscopy confirmed the presence of these structural environments and enabled their location in the core of the thread (collagen helices and antiparallel ß-sheets) or its cuticle (unordered structures). The approach should enable characterization at the molecular level of a wide range of byssus macroscopic properties.


Subject(s)
Collagen/chemistry , Mytilus edulis/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Animals , Models, Molecular , Protein Structure, Secondary
20.
J Phys Chem B ; 114(7): 2373-8, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20121224

ABSTRACT

Electrospinning was used for the first time to prepare nanofibers of the host/guest complex between poly(ethylene oxide) (PEO) and thiourea. It is shown by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) that the stoichiometry of the complex is (EO)(12)-(thiourea)(8), settling a series of conflicting values in literature reports. The complex crystallizes in a monoclinic unit cell with a = 9.15 A, b = 18.88 A, c = 8.25 A, and beta = 92.35 degrees. On the basis of WAXD, infrared spectroscopy, and polarized Raman scattering measurements, it is proposed that the complex adopts a layered structure in which alternating PEO and thiourea layers are stabilized by intermolecular hydrogen bonds. This structure is highly reminiscent of that of the beta complex between PEO and urea. A phase diagram was determined and shows that the complex melts incongruently at 110 degrees C to form a peritectic liquid and crystals of pure thiourea. The nanofibers of the PEO-thiourea present a very large molecular orientation with a (c) value of 0.76, among the largest reported for electrospun materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...