Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 169(13): 1271-80, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22749285

ABSTRACT

Light is a critical determinant of plant shape by controlling branching patterns and bud burst in many species. To gain insight into how light induces bud burst, we investigated whether its inductive effect in rose was related to gibberellin (GA) biosynthesis. In axillary buds of beheaded plants subject to light, the expression of two GA biosynthesis genes (RoGA20ox and RoGA3ox) was promptly and strongly induced, while that of a GA-catabolism genes (RoGA2ox) was reduced. By contrast, lower expression levels of these two GA biosynthesis genes were found in darkness, and correlated with a total inhibition of bud burst. This effect was dependent on both light intensity and quality. In in vitro cultured buds, the inductive effect of light on the growth of preformed leaves and SAM organogenic activity was inhibited by ancymidol and paclobutrazol, two effectors of GA biosynthesis. This effect was concentration-dependent, and negated by GA(3). However, GA(3) alone could not rescue bud burst in the dark. GA biosynthesis was also required for the expression and activity of a vacuolar invertase, and therefore for light-induced sugar metabolism within buds. These findings are evidence that GA biosynthesis contributes to the light effect on bud burst and lay the foundations of a better understanding of its exact role in plant branching.


Subject(s)
Gibberellins/biosynthesis , Gibberellins/genetics , Light , Plant Stems/growth & development , Rosa/growth & development , Rosa/metabolism , Darkness , Gene Expression Regulation, Plant , Genes, Plant
2.
Plant Cell Physiol ; 53(6): 1068-82, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22505690

ABSTRACT

Bud burst is a decisive process in plant architecture that requires light in Rosa sp. This light effect was correlated with stimulation of sugar transport and metabolism in favor of bud outgrowth. We investigated whether sugars could act as signaling entities in the light-mediated regulation of vacuolar invertases and bud burst. Full-length cDNAs encoding two vacuolar invertases (RhVI1 and RhVI2) were isolated from buds. Unlike RhVI2, RhVI1 was preferentially expressed in bursting buds, and was up-regulated in buds of beheaded plants exposed to light. To assess the importance of sugars in this process, the expression of RhVI1 and RhVI2 and the total vacuolar invertase activity were further characterized in buds cultured in vitro on 100 mM sucrose or mannitol under light or in darkness for 48 h. Unlike mannitol, sucrose promoted the stimulatory effect of light on both RhVI1 expression and vacuolar invertase activity. This up-regulation of RhVI1 was rapid (after 6 h incubation) and was induced by as little as 10 mM sucrose or fructose. No effect of glucose was found. Interestingly, both 30 mM palatinose (a non-metabolizable sucrose analog) and 5 mM psicose (a non-metabolizable fructose analog) promoted the light-induced expression of RhVI1 and total vacuolar invertase activity. Sucrose, fructose, palatinose and psicose all promoted bursting of in vitro cultured buds under light. These findings indicate that soluble sugars contribute to the light effect on bud burst and vacuolar invertases, and can function as signaling entities.


Subject(s)
Flowers/radiation effects , Light , Rosa/radiation effects , beta-Fructofuranosidase/metabolism , Amino Acid Sequence , Biological Transport , Cloning, Molecular , Culture Techniques/methods , DNA, Complementary/genetics , DNA, Complementary/metabolism , Darkness , Enzyme Activation , Flowers/genetics , Flowers/metabolism , Fructose/pharmacology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Genes, Plant , Glucose/pharmacology , Isomaltose/analogs & derivatives , Isomaltose/pharmacology , Mannitol/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Rosa/enzymology , Rosa/genetics , Signal Transduction , Sucrose/pharmacology , Time Factors , Transcription, Genetic , Vacuoles/enzymology , Vacuoles/metabolism , beta-Fructofuranosidase/genetics
3.
Plant Cell Environ ; 34(10): 1776-89, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21635271

ABSTRACT

In roses, light is a central environmental factor controlling bud break and involves a stimulation of sugar metabolism. Very little is known about the role of sucrose transporters in the bud break process and its regulation by light. In this study, we show that sugar promotes rose bud break and that bud break is accompanied by an import of sucrose. Radio-labelled sucrose accumulation is higher in buds exposed to light than to darkness and involves an active component. Several sucrose transporter (RhSUC1, 2, 3 and 4) transcripts are expressed in rose tissues, but RhSUC2 transcript level is the only one induced in buds exposed to light after removing the apical dominance. RhSUC2 is preferentially expressed in bursting buds and stems. Functional analyses in baker's yeast demonstrate that RhSUC2 encodes a sucrose/proton co-transporter with a K(m) value of 2.99 mm at pH 4.5 and shows typical features of sucrose symporters. We therefore propose that bud break photocontrol partly depends upon the modulation of sucrose import into buds by RhSUC2.


Subject(s)
Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Rosa/physiology , Sucrose/metabolism , Biological Transport/radiation effects , Light , Membrane Transport Proteins/genetics , Membrane Transport Proteins/radiation effects , Plant Proteins/genetics , Plant Proteins/radiation effects , Plant Stems/metabolism , Plant Stems/radiation effects , Rosa/radiation effects , Sucrose/radiation effects
4.
Plant Cell Environ ; 33(8): 1339-50, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20374536

ABSTRACT

Bud burst in certain species is conditioned by the luminous environment. With roses, the requirement for light is absolute, and darkness totally inhibits bud burst. Few studies have looked into understanding the action of light on the physiological bud burst processes. Here, we show the impact of light on certain components of glucidic metabolism during bud burst. Measurements were taken on decapitated plants of Rosa hybrida L. 'Radrazz' exposed either to darkness, white, blue or R light. Results show that a mobilization of bud and the carrying stem sucrose reserves only takes place in light and accompanies the bud burst. Furthermore, the activity of the RhVI vacuolar acid invertase which contributes to the breakdown of sucrose in the buds, as well as the transcription of the RhVI gene, is reduced in darkness, although it is strongly stimulated by light. The same analysis concerning the RhNAD-SDH gene, coding an NAD-dependent sorbitol dehydrogenase, shows, on the contrary, a strong induction of its transcription in darkness that could reflect the use of survival mechanisms in this condition.


Subject(s)
Carbohydrate Metabolism , Light , Plant Stems/metabolism , Rosa/radiation effects , Sucrose/metabolism , Meristem/growth & development , Plant Leaves/growth & development , Plant Stems/growth & development , Plant Stems/radiation effects , RNA, Plant/metabolism , Rosa/growth & development , Rosa/metabolism , beta-Fructofuranosidase/metabolism
5.
Plant Physiol ; 135(1): 574-86, 2004 May.
Article in English | MEDLINE | ID: mdl-15122035

ABSTRACT

The phloem unloading pathway remains unclear in fleshy fruits accumulating a high level of soluble sugars. A structural investigation in apple fruit (Malus domestica Borkh. cv Golden Delicious) showed that the sieve element-companion cell complex of the sepal bundles feeding the fruit flesh is symplasmically isolated over fruit development. 14C-autoradiography indicated that the phloem of the sepal bundles was functional for unloading. Confocal laser scanning microscopy imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the sepal bundles from the basal to the apical region of the fruit. A 52-kD putative monosaccharide transporter was immunolocalized predominantly in the plasma membrane of both the sieve elements and parenchyma cells and its amount increased during fruit development. A 90-kD plasma membrane H(+)-ATPase was also localized in the plasma membrane of the sieve element-companion cell complex. Studies of [14C]sorbitol unloading suggested that an energy-driven monosaccharide transporter may be functional in phloem unloading. These data provide clear evidence for an apoplasmic phloem unloading pathway in apple fruit and give information on the structural and molecular features involved in this process.


Subject(s)
Fruit/metabolism , Malus/metabolism , Biological Transport/physiology , Carbon Radioisotopes , Cell Membrane/enzymology , Fruit/growth & development , Fruit/ultrastructure , Malus/growth & development , Microscopy, Confocal , Microscopy, Electron , Monosaccharide Transport Proteins/metabolism , Proton-Translocating ATPases/metabolism , Sorbitol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...