Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (152)2019 10 18.
Article in English | MEDLINE | ID: mdl-31680673

ABSTRACT

With this protocol, a well-defined singlesite silica-supported heterogeneous catalyst [(≡Si-O-)Hf(=NMe)(η1-NMe2)] is designed and prepared according to the methodology developed by surface organometallic chemistry (SOMC). In this framework, catalytic cycles can be determined by isolating crucial intermediates. All air-sensitive materials are handled under inert atmosphere (using gloveboxes or a Schlenk line) or high vacuum lines (HVLs, <10-5 mbar). The preparation of SiO2-700 (silica dehydroxylated at 700 °C) and subsequent applications (the grafting of complexes and catalytic runs) requires the use of HVLs and double-Schlenk techniques. Several well-known characterization methods are used, such as Fourier-transform infrared spectroscopy (FTIR), elemental microanalysis, solid-state nuclear magnetic resonance spectroscopy (SSNMR), and state-of-the-art dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP-SENS). FTIR and elemental microanalysis permit scientists to establish the grafting and its stoichiometry. 1H and 13C SSNMR allows the structural determination of the hydrocarbon ligands coordination sphere. DNP SENS is an emerging powerful technique in solid characterization for the detection of poorly sensitive nuclei (15N, in our case). SiO2-700 is treated with about one equivalent of the metal precursor compared to the amount of surface silanol (0.30 mmol·g-1) in pentane at room temperature. Then, volatiles are removed, and the powder samples are dried under dynamic high vacuum to afford the desired materials [(≡Si-O-)Hf(η2π-MeNCH2)(η1-NMe2)(η1-HNMe2)]. After a thermal treatment under high vacuum, the grafted complex is converted into metal imido silica complex [(≡Si-O-)Hf(=NMe)(η1-NMe2)]. [(≡Si-O-)Hf(=NMe)(η1-NMe2)] effectively promotes the metathesis of imines, using the combination of two imine substrates, N-(4-phenylbenzylidene)benzylamine, or N-(4-fluorobenzylidene)-4-fluoroaniline, with N-benzylidenetert-butylamine as substrates. A significantly lower conversion is observed with the blank runs; thus, the presence of the imido group in [(≡Si-O-)Hf(=NMe)(η1-NMe2)] is correlated to the catalytic performance.


Subject(s)
Chemistry, Organic/methods , Imines/chemistry , Organometallic Compounds/chemistry , Silicon Dioxide/chemistry , Catalysis , Hydroxylation , Ligands , Magnetic Resonance Spectroscopy , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , Vacuum
2.
Chem Soc Rev ; 47(22): 8403-8437, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30250959

ABSTRACT

The broad challenges of energy and environment have become a main focus of research efforts to develop more active and selective catalytic systems for key chemical transformations. Surface organometallic chemistry (SOMC) is an established concept, associated with specific tools, for the design, preparation and characterization of well-defined single-site catalysts. The objective is to enter a catalytic cycle through a presumed catalytic intermediate prepared from organometallic or coordination compounds to generate well defined surface organometallic fragments (SOMFs) or surface coordination fragments (SCFs). These notions are the basis of the "catalysis by design" strategy ("structure-activity" relationship) in which a better understanding of the mechanistic aspects of the catalytic process led to the improvement of catalyst performances. In this review the application of SOMC strategy for the design and preparation of catalysts for industrially relevant processes that are crucial to the energy and environment is discussed. In particular, the focus will be on the conversion of energy-related feedstocks, such as methane and higher alkanes that are primary products of the oil and gas industry, and of their product of combustion, CO2, whose efficient capture and conversion is currently indicated as a top priority for the environment. Among the main topics related to energy and environment, catalytic oxidation is also considered as a key subject of this review.

3.
RSC Adv ; 8(37): 20801-20808, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-35542331

ABSTRACT

Vanadium oxytriisopropoxide (VO(O i Pr)3), 1, was grafted on highly dehydroxylated silica (SiO2-700: aerosil silica treated at 700 °C under high vacuum) to generate compound 2 following the concepts and methodology of surface organometallic chemistry (SOMC). The resulting compound was analyzed by elemental analysis, FT-IR, 1H, 13C and 51V solid state (SS) NMR, Raman and EPR spectroscopies. The grafting reaction of 1 to generate 2 was found to lead to the formation of a monopodal surface complex [([triple bond, length as m-dash]Si-O-)V(O)(O i Pr)2], 2m, as well as bipodal [([triple bond, length as m-dash]Si-O-)2V(O)(O i Pr)], 2b, formed along with ([triple bond, length as m-dash]Si-O- i Pr) moieties as an effect of the classical rearrangement of 2m with strained siloxane bridges. Upon controlled thermal treatment at 200 °C under high vacuum, 2m and 2b were found to mainly rearrange to tetrahedral VO4 moieties [([triple bond, length as m-dash]Si-O-)3V(O)] (3) with formation of propylene whereas the ([triple bond, length as m-dash]Si-O- i Pr) groups were preserved. The mechanism of the thermal rearrangement of the isopropoxide groups was investigated by a DFT approach revealing the occurrence of a concerted γ-H-transfer and olefin elimination mechanism.

4.
Acc Chem Res ; 49(4): 664-77, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26959689

ABSTRACT

Heterogeneous catalysis, a field important industrially and scientifically, is increasingly seeking and refining strategies to render itself more predictable. The main issue is due to the nature and the population of catalytically active sites. Their number is generally low to very low, their "acid strengths" or " redox properties" are not homogeneous, and the material may display related yet inactive sites on the same material. In many heterogeneous catalysts, the discovery of a structure-activity reationship is at best challenging. One possible solution is to generate single-site catalysts in which most, if not all, of the sites are structurally identical. Within this context and using the right tools, the catalyst structure can be designed and well-defined, to reach a molecular understanding. It is then feasible to understand the structure-activity relationship and to develop predictable heterogeneous catalysis. Single-site well-defined heterogeneous catalysts can be prepared using concepts and tools of surface organometallic chemistry (SOMC). This approach operates by reacting organometallic compounds with surfaces of highly divided oxides (or of metal nanoparticles). This strategy has a solid track record to reveal structure-activity relationship to the extent that it is becoming now quite predictable. Almost all elements of the periodical table have been grafted on surfaces of oxides (from simple oxides such as silica or alumina to more sophisticated materials regarding composition or porosity). Considering catalytic hydrocarbon transformations, heterogeneous catalysis outcome may now be predicted based on existing mechanistic proposals and the rules of molecular chemistry (organometallic, organic) associated with some concepts of surface sciences. A thorough characterization of the grafted metal centers must be carried out using tools spanning from molecular organometallic or surface chemistry. By selection of the metal, its ligand set, and the support taken as a X, L ligands in the Green formalism, the catalyst can be designed and generated by grafting the organometallic precursor containing the functional group(s) suitable to target a given transformation (surface organometallic fragments (SOMF)). The choice of these SOMF is based on the elementary steps known in molecular chemistry applied to the desired reaction. The coordination sphere necessary for any catalytic reaction involving paraffins, olefins, and alkynes also can thus be predicted. Only their most complete understanding can allow development of catalytic reactions with the highest possible selectivity, activity, and lifetime. This Account will examine the results of SOMC for hydrocarbon transformations on oxide surfaces bearing metals of group 4-6. The silica-supported catalysts are exhibiting remarkable performances for Ziegler-Natta polymerization and depolymerization, low temperature hydrogenolysis of alkanes and waxes, metathesis of alkanes and cycloalkanes, olefins metathesis, and related reactions. In the case of reactions involving molecules that do not contain carbon (water-gas shift, NH3 synthesis, etc.) this single site approach is also valid but will be considered in a later review.

5.
Chem Commun (Camb) ; 52(25): 4617-20, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26903397

ABSTRACT

Upon prolonged thermal exposure under vacuum, a well-defined single-site surface species [([triple bond, length as m-dash]Si-O-)Zr(NEt2)3] () evolves into an ethylimido complex [([triple bond, length as m-dash]Si-O-)Zr([double bond, length as m-dash]NEt)NEt2] (). Reactions of with an imine substrate result in imido/imine ([double bond, length as m-dash]NRi, R: Et, Ph) exchange (metathesis) with the formation of [([triple bond, length as m-dash]Si-O-)Zr([double bond, length as m-dash]NPh)NEt2] (). Compounds and effectively catalyze imine/imine cross-metathesis and are thus considered as the first heterogeneous catalysts active for imine metathesis.


Subject(s)
Imides/chemistry , Imines/chemistry , Organometallic Compounds/chemistry , Silicon Dioxide/chemistry , Zirconium/chemistry , Catalysis , Magnetic Resonance Spectroscopy , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Surface Properties
6.
Chemistry ; 22(9): 3000-8, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26875939

ABSTRACT

Single-site, well-defined, silica-supported tantallaaziridine intermediates [≡Si-O-Ta(η(2) -NRCH2 )(NMe2 )2 ] [R=Me (2), Ph (3)] were prepared from silica-supported tetrakis(dimethylamido)tantalum [≡Si-O-Ta(NMe2 )4 ] (1) and fully characterized by FTIR spectroscopy, elemental analysis, and (1) H,(13) C HETCOR and DQ TQ solid-state (SS) NMR spectroscopy. The formation mechanism, by ß-H abstraction, was investigated by SS NMR spectroscopy and supported by DFT calculations. The C-H activation of the dimethylamide ligand is favored for R=Ph. The results from catalytic testing in the hydroaminoalkylation of alkenes were consistent with the N-alkyl aryl amine substrates being more efficient than N-dialkyl amines.

7.
J Am Chem Soc ; 137(24): 7728-39, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-25950495

ABSTRACT

Recent discoveries highlighted the activity and the intriguing mechanistic features of NbCl5 as a molecular catalyst for the cycloaddition of CO2 and epoxides under ambient conditions. This has inspired the preparation of novel silica-supported Nb species by reacting a molecular niobium precursor, [NbCl5·OEt2], with silica dehydroxylated at 700 °C (SiO(2-700)) or at 200 °C (SiO(2-200)) to generate diverse surface complexes. The product of the reaction between SiO(2-700) and [NbCl5·OEt2] was identified as a monopodal supported surface species, [≡SiONbCl4·OEt2] (1a). The reactions of SiO(2-200) with the niobium precursor, according to two different protocols, generated surface complexes 2a and 3a, presenting significant, but different, populations of the monopodal surface complex along with bipodal [(≡SiO)2NbCl3·OEt2]. (93)Nb solid-state NMR spectra of 1a-3a and (31)P solid-state NMR on their PMe3 derivatives 1b-3b led to the unambiguous assignment of 1a as a single-site monopodal Nb species, while 2a and 3a were found to present two distinct surface-supported components, with 2a being mostly monopodal [≡SiONbCl4·OEt2] and 3a being mostly bipodal [(≡SiO)2NbCl3·OEt2]. A double-quantum/single-quantum (31)P NMR correlation experiment carried out on 2b supported the existence of vicinal Nb centers on the silica surface for this species. 1a-3a were active heterogeneous catalysts for the synthesis of propylene carbonate from CO2 and propylene oxide under mild catalytic conditions; the performance of 2a was found to significantly surpass that of 1a and 3a. With the support of a systematic DFT study carried out on model silica surfaces, the observed differences in catalytic efficiency were correlated with an unprecedented cooperative effect between two neighboring Nb centers on the surface of 2a. This is in an excellent agreement with our previous discoveries regarding the mechanism of NbCl5-catalyzed cycloaddition in the homogeneous phase.

8.
Chemistry ; 21(11): 4294-9, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25585538

ABSTRACT

The silica-supported azazirconacyclopropane ≡SiOZr(HNMe2)(η(2)-NMeCH2)(NMe2) (1) leads exclusively under hydrogenolysis conditions (H2, 150 °C) to the single-site monopodal monohydride silica-supported zirconium species ≡SiOZr(HNMe2)(NMe2)2H (2). Reactivity studies by contacting compound 2 with ethylene, hydrogen/ethylene, propene, or hydrogen/propene, at a temperature of 200 °C revealed alkene hydrogenation.

9.
Chem Commun (Camb) ; 50(82): 12348-51, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25182752

ABSTRACT

A Zn-exchanged heteropolyacid supported onto silica (Zn-HPW/SiO2) activates methane at 25 °C into Zn-methyl. At higher temperatures and with CH4/O2 or CH4/CO2, it gives methanol and acetic acid respectively.

10.
Chemistry ; 20(37): 11870-82, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25056457

ABSTRACT

A mechanistic study on the synthesis of propylene carbonate (PC) from CO2 and propylene oxide (PO) catalyzed by NbCl5 and organic nucleophiles such as 4-dimethylaminopyridine (DMAP) or tetra-n-butylammonium bromide (NBu4 Br) is reported. A combination of in situ spectroscopic techniques and kinetic studies has been used to provide detailed insight into the reaction mechanism, the formation of intermediates, and interactions between the reaction partners. The results of DFT calculations support the experimental observations and allow us to propose a mechanism for this reaction.

12.
Chem Soc Rev ; 42(23): 9035-54, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-23945666

ABSTRACT

Olefin metathesis is increasingly incorporated in polyfunctional industrial processes. The classical WO3/SiO2 olefin metathesis catalyst is combined to other catalysts in order to afford higher added-value chemicals. However, the combination of several reactions, not only in a single reactor, but also stemming from a single, multifunctional surface species is a desirable improvement regarding process issues. Well-defined surface organometallic tungsten species can be designed to implement targeted functionalities (carbene, hydride, alkyl, …). By tuning the metal's coordination sphere, it is possible to combine metathesis with several reactions, such as (de)hydrogenation, dimerization or isomerization. Novel, unconventional reactions for the production and upgrading of alkanes and alkenes have thus been uncovered. The reactivity of this library of supported catalysts is discussed based on the type of mediated transformations: monofunctional (alkene and alkyne metathesis), bifunctional (1-butene or 2-butenes to propylene), trifunctional (ethylene to propylene, alkane metathesis, …). Mechanistic considerations will be discussed to put these results in a wider perspective for future developments.

13.
Chem Commun (Camb) ; 49(41): 4616-8, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23586075

ABSTRACT

Grafting of Zr(NMe2)4 on mesoporous silica SBA-15 afforded selectively well-defined surface species [triple bond, length as m-dash]SiOZr(NMe2)(η2NMeCH2). 2D solid-state NMR ((1)H-(13)C HETCOR, Multiple Quantum) experiments have shown a unique structural rearrangement occurring on the immobilised zirconium bis methylamido ligand.

14.
J Am Chem Soc ; 135(2): 804-10, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23268596

ABSTRACT

Selective functionalization of methane at moderate temperature is of crucial economic, environmental, and scientific importance. Here, we report that methane reacts with heteropolyacids (HPAs) chemisorbed on silica to produce acetic acid under soft conditions. Specially, when chemisorbed on silica, H(4)SiW(12)O(40), H(3)PW(12)O(40), H(4)SiMo(12)O(40), and H(3)PMo(12)O(40) activate the primary C-H bond of methane at room temperature and atmospheric pressure. With these systems, acetic acid is produced directly from methane, in a single step, in the absence of Pd and without adding CO. Extensive surface characterization by solid-state NMR spectroscopy, IR spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy suggests that C-H activation of methane is triggered by the protons in the HPA-silica interface with concerted reduction of the Keggin cage, leading to water formation and hydration of the interface. This is the simplest and mildest way reported to date to functionalize methane.

15.
Chemistry ; 19(3): 964-73, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23184645

ABSTRACT

Homoleptic benzyl derivatives of titanium and zirconium have been grafted onto silica that was dehydroxylated at 200 and 700 °C, thereby affording bi-grafted and mono-grafted single-site species, respectively, as shown by a combination of experimental techniques (IR, MAS NMR, EXAFS, and elemental analysis) and theoretical calculations. Marked differences between these compounds and their neopentyl analogues are discussed and rationalized by using DFT. These differences were assigned to the selectivity of the grafting process, which, depending on the structure of the molecular precursors, led to different outcomes in terms of the mono- versus bi-grafted species for the same surface concentration of silanol species. The benzylzirconium derivatives were active towards ethylene polymerization in the absence of an activator and the bi-grafted species displayed higher activity than their mono-grafted analogues. In contrast, the benzyltitanium and neopentylzirconium counterparts were not active under similar reaction conditions.

16.
Chem Commun (Camb) ; 48(25): 3067-9, 2012 Mar 25.
Article in English | MEDLINE | ID: mdl-22344191

ABSTRACT

2D double-quantum (1)H-(1)H NMR unambiguously shows that the "isolated" ≡Si-OH surface silanols of dehydroxylated SBA-15 are converted upon treatment with ammonia into single silylamine surface site ≡Si-NH(2). The "gem" di-silanols (=Si(OH)(2)) remain intact. Treatment using HMDS produces (=Si(OSiMe(3))(2)) but leaves ≡Si-NH(2) untouched. The resulting surface is hydrophobic and stable.

17.
Chem Commun (Camb) ; 47(10): 2979-81, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21253632

ABSTRACT

Impregnation of [(AliBu(3))(Et(2)O)] on partially dehydroxylated SBA-15 affords a mesoporous material bearing the well-defined single site surface aluminium species [(≡SiO)(2)Al(iBu)(Et(2)O)].

19.
Dalton Trans ; 39(34): 7921-35, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20657926

ABSTRACT

Pd(II) complexes in which 2-pyridyldiphenylphosphine (Ph(2)Ppy) chelates the Pd(II) centre have been prepared and characterized by multinuclear NMR spectroscopy and by X-ray crystallographic analysis. trans-[Pd(kappa(1)-Ph(2)Ppy)(2)Cl(2)] is transformed into [Pd(kappa(2)-Ph(2)Ppy)(kappa(1)-Ph(2)Ppy)Cl]Cl by the addition of a few drops of methanol to dichloromethane solutions, and into [Pd(kappa(2)-Ph(2)Ppy)(kappa(1)-Ph(2)Ppy)Cl]X by addition of AgX or TlX, (X = BF(4)(-), CF(3)SO(3)(-) or MeSO(3)(-)). [Pd(kappa(1)-Ph(2)Ppy)(2)(p-benzoquinone)] can be transformed into [Pd(kappa(2)-Ph(2)Ppy)(kappa(1)-Ph(2)Ppy)(MeSO(3))][MeSO(3)] by the addition of two equivalents of MeSO(3)H. Addition of further MeSO(3)H affords [Pd(kappa(2)-Ph(2)Ppy)(kappa(1)-Ph(2)PpyH)(MeSO(3))][MeSO(3)](2). Addition of two equivalents of CF(3)SO(3)H, MeSO(3)H or CF(3)CO(2)H and two equivalents of Ph(2)Ppy to [Pd(OAc)(2)] in CH(2)Cl(2) or CH(2)Cl(2)-MeOH affords [Pd(kappa(2)-Ph(2)Ppy)(kappa(1)-Ph(2)Ppy)X]X, (X = CF(3)SO(3)(-), MeSO(3)(-) or CF(3)CO(2)(-)), however addition of two equivalents of HBF(4).Et(2)O affords a different complex, tentatively formulated as [Pd(kappa(2)-Ph(2)Ppy)(2)]X(2). Addition of excess acid results in the clean formation of [Pd(kappa(2)-Ph(2)Ppy)(kappa(1)-Ph(2)PpyH)(X)]X(2). In methanol, addition of MeSO(3)H and three equivalents of Ph(2)Ppy to [Pd(OAc)(2)] affords [Pd(kappa(2)-Ph(2)Ppy)(kappa(1)-Ph(2)Ppy)(2)][MeSO(3)](2) as the principal Pd-phosphine complex. The fluxional processes occuring in these complexes and in [Pd (kappa(1)-Ph(2)Ppy)(3)Cl]X, (X = Cl, OTf) and the potential for hemilability of the Ph(2)Ppy ligand has been investigated by variable-temperature NMR. The activation entropy and enthalpy for the regiospecific fluxional processes occuring in [Pd(kappa(2)-Ph(2)Ppy)(kappa(1)-Ph(2)Ppy)(2)][MeSO(3)](2) have been determined and are in the range -10 to -30 J mol(-1) K(-1) and ca. 30 kJ mol(-1) respectively, consistent with associative pathways being followed. The observed regioselectivities of the exchanges are attributed to the constraints imposed by microscopic reversibility and the small bite angle of the Ph(2)Ppy ligand. X-Ray crystal structure determinations of trans-[Pd(kappa(1)-Ph(2)Ppy)(2)Cl(2)], [Pd(kappa(2)-Ph(2)Ppy)(kappa(1)-Ph(2)Ppy)Cl][BF(4)], [Pd(kappa(1)-Ph(2)Ppy)(2)(p-benzoquinone)], trans-[Pd(kappa(1)-Ph(2)PpyH)(2)Cl(2)][MeSO(3)](2), and [Pd(kappa(1)-Ph(2)Ppy)(3)Cl](Cl) are reported. In [Pd(kappa(2)-Ph(2)Ppy)(kappa(1)-Ph(2)Ppy)Cl][BF(4)] a donor-acceptor interaction is seen between the pyridyl-N of the monodentate Ph(2)Ppy ligand and the phosphorus of the chelating Ph(2)Ppy resulting in a trigonal bipyramidal geometry at this phosphorus.

SELECTION OF CITATIONS
SEARCH DETAIL
...