Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Nano Mater ; 7(13): 15317-15324, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39022450

ABSTRACT

Understanding the thermoelastic response of a nanostructure is crucial for the choice of materials and interfaces in electronic devices with improved and tailored transport properties at the nanoscale. Here, we show how the deposition of a MoS2 monolayer can strongly modify the nanoscale thermoelastic dynamics of silicon substrates close to their interface. We demonstrate this by creating a transient grating with extreme ultraviolet light, using ultrashort free-electron laser pulses, whose ≈84 nm period is comparable to the size of elements typically used in nanodevices, such as electric contacts and nanowires. The thermoelastic response, featuring coherent acoustic waves and incoherent relaxation, is tangibly modified by the presence of monolayer MoS2. Namely, we observed a major reduction of the amplitude of the surface mode, which is almost suppressed, while the longitudinal mode is basically unperturbed, aside from a faster decay of the acoustic modulations. We interpret this behavior as a selective modification of the surface elasticity, and we discuss the conditions to observe such effect, which may be of immediate relevance for the design of Si-based nanoscale devices.

2.
Nat Commun ; 15(1): 1317, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351136

ABSTRACT

Nanophononic materials are characterized by a periodic nanostructuration, which may lead to coherent scattering of phonons, enabling interference and resulting in modified phonon dispersions. We have used the extreme ultraviolet transient grating technique to measure phonon frequencies and lifetimes in a low-roughness nanoporous phononic membrane of SiN at wavelengths between 50 and 100 nm, comparable to the nanostructure lengthscale. Surprisingly, phonon frequencies are only slightly modified upon nanostructuration, while phonon lifetime is strongly reduced. Finite element calculations indicate that this is due to coherent phonon interference, which becomes dominant for wavelengths between ~ half and twice the inter-pores distance. Despite this, vibrational energy transport is ensured through an energy flow among the coherent modes created by reflections. This interference of phonon echos from periodic interfaces is likely another aspect of the mutual coherence effects recently highlighted in amorphous and complex crystalline materials and, in this context, could be used to tailor transport properties of nanostructured materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...