Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 81(13): 2778-2792.e4, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33932350

ABSTRACT

DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks. We show that stalled Polε drives nascent strand resection causing fork functional collapse, averted via checkpoint-dependent phosphorylation. Polε catalytic subunit Pol2 is phosphorylated on serine 430, influencing partitioning between polymerase and exonuclease active sites. A phosphormimetic S430D change reduces exonucleolysis in vitro and counteracts fork collapse. Conversely, non-phosphorylatable pol2-S430A expression causes resection-driven stressed fork defects. Our findings reveal that checkpoint kinases switch Polε to an exonuclease-safe mode preventing nascent strand resection and stabilizing stalled replication forks. Elective partitioning suppression has implications for the diverse Polε roles in genome integrity maintenance.


Subject(s)
DNA Polymerase II/chemistry , Exonucleases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Amino Acid Substitution , Catalytic Domain , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , DNA, Fungal/biosynthesis , DNA, Fungal/chemistry , DNA, Fungal/genetics , Exonucleases/genetics , Exonucleases/metabolism , Mutation, Missense , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
Mol Cell ; 68(4): 758-772.e4, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29129641

ABSTRACT

Replication fork integrity is challenged in conditions of stress and protected by the Mec1/ATR checkpoint to preserve genome stability. Still poorly understood in fork protection is the role played by the structural maintenance of chromosomes (SMC) cohesin complex. We uncovered a role for the Rsp5Bul2 ubiquitin ligase in promoting survival to replication stress by preserving stalled fork integrity. Rsp5Bul2 physically interacts with cohesin and the Mec1 kinase, thus promoting checkpoint-dependent cohesin ubiquitylation and cohesin-mediated fork protection. Ubiquitylation mediated by Rsp5Bul2 promotes cohesin mobilization from chromatin neighboring stalled forks, likely by stimulating the Cdc48/p97 ubiquitin-selective segregase, and its timely association to nascent chromatids. This Rsp5Bul2 fork protection mechanism requires the Wpl1 cohesin mobilizer as well as the function of the Eco1 acetyltransferase securing sister chromatid entrapment. Our data indicate that ubiquitylation facilitates cohesin dynamic interfacing with replication forks within a mechanism preserving stalled-fork functional architecture.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Replication/physiology , DNA, Fungal/biosynthesis , Saccharomyces cerevisiae/metabolism , Ubiquitination/physiology , Acetyltransferases/genetics , Acetyltransferases/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA, Fungal/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligase Complexes/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Cohesins
3.
Nucleic Acids Res ; 44(22): 10676-10690, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27672038

ABSTRACT

Problems during DNA replication underlie genomic instability and drive malignant transformation. The DNA damage checkpoint stabilizes stalled replication forks thus counteracting aberrant fork transitions, DNA breaks and chromosomal rearrangements. We analyzed fork processing in checkpoint deficient cells by coupling psoralen crosslinking with replication intermediate two-dimensional gel analysis. This revealed a novel role for Exo1 nuclease in resecting reversed replication fork structures and counteracting the accumulation of aberrant intermediates resembling fork cleavage products. Genetic analyses demonstrated a functional interplay of Exo1 with Mus81, Dna2 and Sae2 nucleases in promoting cell survival following replication stress, suggestive of concerted nucleolytic processing of stalled forks. While Mus81 and other Structure Specific Endonucleases do not contribute to obvious collapsed fork transitions, Dna2 promotes reversed fork resection likely by facilitating Exo1 access to nascent strands. Instead, Sae2 cooperates with Exo1 in counteracting putative fork cleavage events linked to double strand breaks formation and increased gross chromosomal rearrangement rates. Our data indicate that in checkpoint deficient cells diverse nuclease activities interface to eliminate aberrant replication intermediates and prevent chromosome instability.


Subject(s)
DNA Replication , DNA, Fungal/genetics , Saccharomyces cerevisiae/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 2/metabolism , Chromosomal Instability , Chromosomes, Fungal/genetics , DNA Helicases/metabolism , DNA Repair , DNA, Fungal/metabolism , Endonucleases/metabolism , Exodeoxyribonucleases/metabolism , G1 Phase Cell Cycle Checkpoints , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...