Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Biomech ; 148: 111472, 2023 02.
Article in English | MEDLINE | ID: mdl-36753853

ABSTRACT

Cartilage repair has been studied extensively in the context of injury and disease, but the joint's management of regular sub-injurious damage to cartilage, or 'wear and tear,' which occurs due to normal activity, is poorly understood. We hypothesize that this cartilage maintenance is mediated in part by cells derived from the synovium that migrate to the worn articular surface. Here, we demonstrate in vitro that the early steps required for such a process can occur. First, we show that under physiologic mechanical loads, chondrocyte death occurs in the cartilage superficial zone along with changes to the cartilage surface topography. Second, we show that synoviocytes are released from the synovial lining under physiologic loads and attach to worn cartilage. Third, we show that synoviocytes parachuted onto a simulated or native cartilage surface will modify their behavior. Specifically, we show that synoviocyte interactions with chondrocytes lead to changes in synoviocyte mechanosensitivity, and we demonstrate that cartilage-attached synoviocytes can express COL2A1, a hallmark of the chondrogenic phenotype. Our findings suggest that synoviocyte-mediated repair of cartilage 'wear and tear' as a component of joint homeostasis is feasible and is deserving of future study.


Subject(s)
Cartilage, Articular , Synoviocytes , Cartilage, Articular/physiology , Synovial Membrane/physiology , Chondrocytes
2.
Int J Mol Sci ; 23(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35409277

ABSTRACT

A prominent feature of the skeleton is its ability to remodel in response to biophysical stimuli and to repair under varied biophysical conditions. This allows the skeleton considerable adaptation to meet its physiological roles of stability and movement. Skeletal cells and their mesenchymal precursors exist in a native environment rich with biophysical signals, and they sense and respond to those signals to meet organismal demands of the skeleton. While mechanical strain is the most recognized of the skeletal biophysical stimuli, signaling phenomena also include fluid flow, hydrostatic pressure, shear stress, and ion-movement-related electrokinetic phenomena including, prominently, streaming potentials. Because of the complex interactions of these electromechanical signals, it is difficult to isolate the significance of each. The application of external electrical and electromagnetic fields allows an exploration of the effects of these stimuli on cell differentiation and extra-cellular matrix formation in the absence of mechanical strain. This review takes a distinctly translational approach to mechanistic and preclinical studies of differentiation and skeletal lineage commitment of mesenchymal cells under biophysical stimulation. In vitro studies facilitate the examination of isolated cellular responses while in vivo studies permit the observation of cell differentiation and extracellular matrix synthesis.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Cell Differentiation , Extracellular Matrix/physiology , Osteogenesis/physiology , Stress, Mechanical
3.
Biomed Phys Eng Express ; 8(3)2022 03 24.
Article in English | MEDLINE | ID: mdl-35290975

ABSTRACT

Despite advancements in tissue engineering, the methods used to generate three-dimensional (3D)in vitromodels for rapid screening and characterization studies remain time and labor intensive. Bioprinting offers an opportunity to offset these limitations by providing a scalable, high-throughput method with precise control over biomaterial scaffold and cellular deposition. However, the process of formulating bioinks can be complex in terms of balancing the mechanical integrity of a bioscaffold and viability of cells. One key factor, especially in alginate-based bioinks, is the rate of bioscaffold dissolution. It must allow cells to replace the bioscaffold with extracellular matrix (ECM), yet remain durable during extended tissue culture. This study uses a Design of Experiments (DoE) approach to understand the dependencies of multiple variables involved in the formulation and processing of an alginate-based bioink. The focus of the DoE was to understand the effects of hydrogel composition on bioink durability while maintaining cell viability. Three ingredients were varied in all: alginate, nanocellulose, and fibrinogen. Their effects on the bioink were then measured with respect to extrudability, strength, and stiffness as determined by dynamic mechanical analysis (DMA). The DoE demonstrated that mechanical integrity increased with increasing alginate concentration. In contrast, fibrinogen and nanofibril concentration had no statistically significant effect. The optimized ink containing fibroblasts was printable using multiple nozzle sizes while also supporting fibroblast cell viability. DMA characterization further showed that the composition of the cell culture medium did not modulate the degradation rate of the hydrogel. Ultimately, the study outlines a methodology for formulating a bioink that will result in robust bioscaffolds forin vitromodel development.


Subject(s)
Bioprinting , Alginates , Bioprinting/methods , Fibrinogen , Hydrogels , Ink , Printing, Three-Dimensional
4.
PLoS Genet ; 16(10): e1009100, 2020 10.
Article in English | MEDLINE | ID: mdl-33085659

ABSTRACT

Elucidating the functional consequence of molecular defects underlying genetic diseases enables appropriate design of therapeutic options. Treatment of cystic fibrosis (CF) is an exemplar of this paradigm as the development of CFTR modulator therapies has allowed for targeted and effective treatment of individuals harboring specific genetic variants. However, the mechanism of these drugs limits effectiveness to particular classes of variants that allow production of CFTR protein. Thus, assessment of the molecular mechanism of individual variants is imperative for proper assignment of these precision therapies. This is particularly important when considering variants that affect pre-mRNA splicing, thus limiting success of the existing protein-targeted therapies. Variants affecting splicing can occur throughout exons and introns and the complexity of the process of splicing lends itself to a variety of outcomes, both at the RNA and protein levels, further complicating assessment of disease liability and modulator response. To investigate the scope of this challenge, we evaluated splicing and downstream effects of 52 naturally occurring CFTR variants (exonic = 15, intronic = 37). Expression of constructs containing select CFTR intronic sequences and complete CFTR exonic sequences in cell line models allowed for assessment of RNA and protein-level effects on an allele by allele basis. Characterization of primary nasal epithelial cells obtained from individuals harboring splice variants corroborated in vitro data. Notably, we identified exonic variants that result in complete missplicing and thus a lack of modulator response (e.g. c.2908G>A, c.523A>G), as well as intronic variants that respond to modulators due to the presence of residual normally spliced transcript (e.g. c.4242+2T>C, c.3717+40A>G). Overall, our data reveals diverse molecular outcomes amongst both exonic and intronic variants emphasizing the need to delineate RNA, protein, and functional effects of each variant in order to accurately assign precision therapies.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis/therapy , RNA Splicing/genetics , Alternative Splicing/genetics , Amino Acid Substitution/genetics , Chlorides/metabolism , Cystic Fibrosis/pathology , Electromyography , Exons/genetics , Genetic Variation/genetics , HEK293 Cells , Humans , Introns/genetics , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Nucleotides/genetics , Precision Medicine/methods , Primary Cell Culture , RNA, Messenger/genetics
5.
Microbiome ; 8(1): 58, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321582

ABSTRACT

BACKGROUND: The skin micro-environment varies across the body, but all sites are host to microorganisms that can impact skin health. Some of these organisms are true commensals which colonize a unique niche on the skin, while open exposure of the skin to the environment also results in the transient presence of diverse microbes with unknown influences on skin health. Culture-based studies of skin microbiota suggest that skin microbes can affect skin properties, immune responses, pathogen growth, and wound healing. RESULTS: In this work, we greatly expanded the diversity of available commensal organisms by collecting > 800 organisms from 3 body sites of 17 individuals. Our collection includes > 30 bacterial genera and 14 fungal genera, with Staphylococcus and Micrococcus as the most prevalent isolates. We characterized a subset of skin isolates for the utilization of carbon compounds found on the skin surface. We observed that members of the skin microbiota have the capacity to metabolize amino acids, steroids, lipids, and sugars, as well as compounds originating from personal care products. CONCLUSIONS: This collection is a resource that will support skin microbiome research with the potential for discovery of novel small molecules, development of novel therapeutics, and insight into the metabolic activities of the skin microbiota. We believe this unique resource will inform skin microbiome management to benefit skin health. Video abstract.


Subject(s)
Bacteria , Fungi , Microbiota , Skin/microbiology , Adolescent , Adult , Bacteria/classification , Bacteria/isolation & purification , Fungi/classification , Fungi/isolation & purification , Healthy Volunteers , Humans , Middle Aged , Young Adult
6.
Am J Respir Crit Care Med ; 199(9): 1116-1126, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30888834

ABSTRACT

Rationale: The advent of precision treatment for cystic fibrosis using small-molecule therapeutics has created a need to estimate potential clinical improvements attributable to increases in cystic fibrosis transmembrane conductance regulator (CFTR) function. Objectives: To derive CFTR function of a variety of CFTR genotypes and correlate with key clinical features (sweat chloride concentration, pancreatic exocrine status, and lung function) to develop benchmarks for assessing response to CFTR modulators. Methods: CFTR function assigned to 226 unique CFTR genotypes was correlated with the clinical data of 54,671 individuals enrolled in the Clinical and Functional Translation of CFTR (CFTR2) project. Cross-sectional FEV1% predicted measurements were plotted by age at which measurement was obtained. Shifts in sweat chloride concentration and lung function reported in CFTR modulator trials were compared with function-phenotype correlations to assess potential efficacy of therapies. Measurements and Main Results: CFTR genotype function exhibited a logarithmic relationship with each clinical feature. Modest increases in CFTR function related to differing genotypes were associated with clinically relevant improvements in cross-sectional FEV1% predicted over a range of ages (6-82 yr). Therapeutic responses to modulators corresponded closely to predictions from the CFTR2-derived relationship between CFTR genotype function and phenotype. Conclusions: Increasing CFTR function in individuals with severe disease will have a proportionally greater effect on outcomes than similar increases in CFTR function in individuals with mild disease and should reverse a substantial fraction of the disease process. This study provides reference standards for clinical outcomes that may be achieved by increasing CFTR function.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Adolescent , Adult , Child , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Female , Forced Expiratory Volume , Genetic Association Studies , Humans , Male , Middle Aged , Precision Medicine/methods , Young Adult
7.
PLoS Genet ; 14(11): e1007723, 2018 11.
Article in English | MEDLINE | ID: mdl-30444886

ABSTRACT

CFTR modulators have revolutionized the treatment of individuals with cystic fibrosis (CF) by improving the function of existing protein. Unfortunately, almost half of the disease-causing variants in CFTR are predicted to introduce premature termination codons (PTC) thereby causing absence of full-length CFTR protein. We hypothesized that a subset of nonsense and frameshift variants in CFTR allow expression of truncated protein that might respond to FDA-approved CFTR modulators. To address this concept, we selected 26 PTC-generating variants from four regions of CFTR and determined their consequences on CFTR mRNA, protein and function using intron-containing minigenes expressed in 3 cell lines (HEK293, MDCK and CFBE41o-) and patient-derived conditionally reprogrammed primary nasal epithelial cells. The PTC-generating variants fell into five groups based on RNA and protein effects. Group A (reduced mRNA, immature (core glycosylated) protein, function <1% (n = 5)) and Group B (normal mRNA, immature protein, function <1% (n = 10)) variants were unresponsive to modulator treatment. However, Group C (normal mRNA, mature (fully glycosylated) protein, function >1% (n = 5)), Group D (reduced mRNA, mature protein, function >1% (n = 5)) and Group E (aberrant RNA splicing, mature protein, function > 1% (n = 1)) variants responded to modulators. Increasing mRNA level by inhibition of NMD led to a significant amplification of modulator effect upon a Group D variant while response of a Group A variant was unaltered. Our work shows that PTC-generating variants should not be generalized as genetic 'nulls' as some may allow generation of protein that can be targeted to achieve clinical benefit.


Subject(s)
Codon, Nonsense , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Frameshift Mutation , Genetic Heterogeneity , 3' Untranslated Regions , 5' Untranslated Regions , Animals , Cell Line , Cystic Fibrosis/metabolism , Cystic Fibrosis/therapy , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Exons , Gene Expression , Humans , Nonsense Mediated mRNA Decay , RNA Splicing
8.
JCI Insight ; 3(14)2018 07 26.
Article in English | MEDLINE | ID: mdl-30046002

ABSTRACT

Treatment of individuals with cystic fibrosis (CF) has been transformed by small molecule therapies that target select pathogenic variants in the CF transmembrane conductance regulator (CFTR). To expand treatment eligibility, we stably expressed 43 rare missense CFTR variants associated with moderate CF from a single site in the genome of human CF bronchial epithelial (CFBE41o-) cells. The magnitude of drug response was highly correlated with residual CFTR function for the potentiator ivacaftor, the corrector lumacaftor, and ivacaftor-lumacaftor combination therapy. Response of a second set of 16 variants expressed stably in Fischer rat thyroid (FRT) cells showed nearly identical correlations. Subsets of variants were identified that demonstrated statistically significantly higher responses to specific treatments. Furthermore, nearly all variants studied in CFBE cells (40 of 43) and FRT cells (13 of 16) demonstrated greater response to ivacaftor-lumacaftor combination therapy than either modulator alone. Together, these variants represent 87% of individuals in the CFTR2 database with at least 1 missense variant. Thus, our results indicate that most individuals with CF carrying missense variants are (a) likely to respond modestly to currently available modulator therapy, while a small fraction will have pronounced responses, and (b) likely to derive the greatest benefit from combination therapy.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Aminophenols/therapeutic use , Aminopyridines/therapeutic use , Benzodioxoles/therapeutic use , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Drug Therapy, Combination , HEK293 Cells , Humans , Mutation , Quinolones/therapeutic use
9.
Am J Hum Genet ; 102(6): 1062-1077, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29805046

ABSTRACT

Missense DNA variants have variable effects upon protein function. Consequently, interpreting their pathogenicity is challenging, especially when they are associated with disease variability. To determine the degree to which functional assays inform interpretation, we analyzed 48 CFTR missense variants associated with variable expressivity of cystic fibrosis (CF). We assessed function in a native isogenic context by evaluating CFTR mutants that were stably expressed in the genome of a human airway cell line devoid of endogenous CFTR expression. 21 of 29 variants associated with full expressivity of the CF phenotype generated <10% wild-type CFTR (WT-CFTR) function, a conservative threshold for the development of life-limiting CF lung disease, and five variants had moderately decreased function (10% to ∼25% WT-CFTR). The remaining three variants in this group unexpectedly had >25% WT-CFTR function; two were higher than 75% WT-CFTR. As expected, 14 of 19 variants associated with partial expressivity of CF had >25% WT-CFTR function; however, four had minimal to no effect on CFTR function (>75% WT-CFTR). Thus, 6 of 48 (13%) missense variants believed to be disease causing did not alter CFTR function. Functional studies substantially refined pathogenicity assignment with expert annotation and criteria from the American College of Medical Genetics and Genomics and Association for Molecular Pathology. However, four algorithms (CADD, REVEL, SIFT, and PolyPhen-2) could not differentiate between variants that caused severe, moderate, or minimal reduction in function. In the setting of variable expressivity, these results indicate that functional assays are essential for accurate interpretation of missense variants and that current prediction tools should be used with caution.


Subject(s)
Biological Assay/methods , Gene Expression Regulation , Mutation, Missense/genetics , Algorithms , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Molecular Sequence Annotation , Mutant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reference Standards
10.
Am J Hum Genet ; 100(5): 751-765, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28475858

ABSTRACT

We developed a variant-annotation method that combines sequence-based machine-learning classification with a context-dependent algorithm for selecting splice variants. Our approach is distinctive in that it compares the splice potential of a sequence bearing a variant with the splice potential of the reference sequence. After training, classification accurately identified 168 of 180 (93.3%) canonical splice sites of five genes. The combined method, CryptSplice, identified and correctly predicted the effect of 18 of 21 (86%) known splice-altering variants in CFTR, a well-studied gene whose loss-of-function variants cause cystic fibrosis (CF). Among 1,423 unannotated CFTR disease-associated variants, the method identified 32 potential exonic cryptic splice variants, two of which were experimentally evaluated and confirmed. After complete CFTR sequencing, the method found three cryptic intronic splice variants (one known and two experimentally verified) that completed the molecular diagnosis of CF in 6 of 14 individuals. CryptSplice interrogation of sequence data from six individuals with X-linked dyskeratosis congenita caused by an unknown disease-causing variant in DKC1 identified two splice-altering variants that were experimentally verified. To assess the extent to which disease-associated variants might activate cryptic splicing, we selected 458 pathogenic variants and 348 variants of uncertain significance (VUSs) classified as high confidence from ClinVar. Splice-site activation was predicted for 129 (28%) of the pathogenic variants and 75 (22%) of the VUSs. Our findings suggest that cryptic splice-site activation is more common than previously thought and should be routinely considered for all variants within the transcribed regions of genes.


Subject(s)
Cell Cycle Proteins/genetics , Computational Biology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genetic Variation , Nuclear Proteins/genetics , RNA Splice Sites , Algorithms , Cell Cycle Proteins/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Dyskeratosis Congenita/genetics , Exons , Gene Expression Regulation , Genetic Loci , Genomics , HEK293 Cells , Humans , Introns , Mutation, Missense , Nuclear Proteins/metabolism , RNA Splicing , Sequence Analysis, DNA , Support Vector Machine
11.
Hum Genome Var ; 3: 16038, 2016.
Article in English | MEDLINE | ID: mdl-27917292

ABSTRACT

Extensive phenotypic variability is commonly observed in individuals with Mendelian disorders, even among those with identical genotypes in the disease-causing gene. To determine whether variants within and surrounding CFTR contribute to phenotypic variability in cystic fibrosis (CF), we performed deep sequencing of CFTR in 762 patients homozygous for the common CF-causing variant, F508del. In phase 1, ~200 kb encompassing CFTR and extending 10 kb 5' and 5 kb 3' of the gene was sequenced in 486 F508del homozygotes selected from the extremes of sweat chloride concentration. In phase 2, a 510 kb region, which included the entire topologically associated domain of CFTR, was sequenced in 276 F508del homozygotes drawn from extremes of lung function. An additional 163 individuals who carried F508del and a different CF-causing variant were sequenced to inform haplotype construction. Region-based burden testing of both common and rare variants revealed seven regions of significance (α=0.01), five of which overlapped known regulatory elements or chromatin interactions. Notably, the -80 kb locus known to interact with the CFTR promoter was associated with variation in both CF traits. Haplotype analysis revealed a single rare recombination event (1.9% frequency) in intron 15 of CFTR bearing the F508del variant. Otherwise, the majority of F508del chromosomes were markedly similar, consistent with a single origin of the F508del allele. Together, these high-resolution variant analyses of the CFTR locus suggest a role for non-coding regulatory motifs in trait variation among individuals carrying the common CF allele.

12.
Am J Physiol Lung Cell Mol Physiol ; 311(6): L1170-L1182, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27793802

ABSTRACT

The development of cystic fibrosis transmembrane conductance regulator (CFTR) targeted therapy for cystic fibrosis has generated interest in maximizing membrane residence of mutant forms of CFTR by manipulating interactions with scaffold proteins, such as sodium/hydrogen exchange regulatory factor-1 (NHERF1). In this study, we explored whether COOH-terminal sequences in CFTR beyond the PDZ-binding motif influence its interaction with NHERF1. NHERF1 displayed minimal self-association in blot overlays (NHERF1, Kd = 1,382 ± 61.1 nM) at concentrations well above physiological levels, estimated at 240 nM from RNA-sequencing and 260 nM by liquid chromatography tandem mass spectrometry in sweat gland, a key site of CFTR function in vivo. However, NHERF1 oligomerized at considerably lower concentrations (10 nM) in the presence of the last 111 amino acids of CFTR (20 nM) in blot overlays and cross-linking assays and in coimmunoprecipitations using differently tagged versions of NHERF1. Deletion and alanine mutagenesis revealed that a six-amino acid sequence 1417EENKVR1422 and the terminal 1478TRL1480 (PDZ-binding motif) in the COOH-terminus were essential for the enhanced oligomerization of NHERF1. Full-length CFTR stably expressed in Madin-Darby canine kidney epithelial cells fostered NHERF1 oligomerization that was substantially reduced (∼5-fold) on alanine substitution of EEN, KVR, or EENKVR residues or deletion of the TRL motif. Confocal fluorescent microscopy revealed that the EENKVR and TRL sequences contribute to preferential localization of CFTR to the apical membrane. Together, these results indicate that COOH-terminal sequences mediate enhanced NHERF1 interaction and facilitate the localization of CFTR, a property that could be manipulated to stabilize mutant forms of CFTR at the apical surface to maximize the effect of CFTR-targeted therapeutics.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , PDZ Domains , Phosphoproteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , Adult , Amino Acid Motifs , Amino Acid Sequence , Animals , Cell Polarity , Dogs , Eccrine Glands/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Madin Darby Canine Kidney Cells , Protein Binding , Protein Multimerization , Proteomics , Structure-Activity Relationship
13.
Hum Mol Genet ; 25(10): 1923-1933, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26911677

ABSTRACT

Elevated sweat chloride levels, failure to thrive (FTT), and lung disease are characteristic features of cystic fibrosis (CF, OMIM #219700). Here we describe variants in CA12 encoding carbonic anhydrase XII in two pedigrees exhibiting CF-like phenotypes. Exome sequencing of a white American adult diagnosed with CF due to elevated sweat chloride, recurrent hyponatremia, infantile FTT and lung disease identified deleterious variants in each CA12 gene: c.908-1 G>A in a splice acceptor and a novel frameshift insertion c.859_860insACCT. In an unrelated consanguineous Omani family, two children with elevated sweat chloride, infantile FTT, and recurrent hyponatremia were homozygous for a novel missense variant (p.His121Gln). Deleterious CFTR variants were absent in both pedigrees. CA XII protein was localized apically in human bronchiolar epithelia and basolaterally in the reabsorptive duct of human sweat glands. Respiratory epithelial cell RNA from the adult proband revealed only aberrant CA12 transcripts and in vitro analysis showed greatly reduced CA XII protein. Studies of ion transport across respiratory epithelial cells in vivo and in culture revealed intact CFTR-mediated chloride transport in the adult proband. CA XII protein bearing either p.His121Gln or a previously identified p.Glu143Lys missense variant localized to the basolateral membranes of polarized Madin-Darby canine kidney (MDCK) cells, but enzyme activity was severely diminished when assayed at physiologic concentrations of extracellular chloride. Our findings indicate that loss of CA XII function should be considered in individuals without CFTR mutations who exhibit CF-like features in the sweat gland and lung.


Subject(s)
Carbonic Anhydrases/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Lung Diseases/genetics , Sweat/metabolism , Adolescent , Adult , Animals , Carbonic Anhydrases/biosynthesis , Carbonic Anhydrases/metabolism , Child , Child, Preschool , Chlorides/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/physiopathology , Dogs , Female , Gene Expression Regulation, Enzymologic , Homozygote , Humans , Lung/enzymology , Lung/pathology , Lung Diseases/metabolism , Lung Diseases/physiopathology , Madin Darby Canine Kidney Cells , Male , Mutation , Pedigree , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...