Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 10(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34572991

ABSTRACT

Microalgal biotechnology is gaining importance. However, key issues in the pipeline from species selection towards large biomass production still require improvements to maximize the yield and lower the microalgal production costs. This study explores a co-cultivation strategy to improve the bioactive compounds richness of the harvested microalgal biomass. Based on their biotechnological potential, two diatoms (Skeletonema marinoi, Cyclotella cryptica) and one eustigmatophyte (Nannochloropsis oceanica) were grown alone or in combination. Concentrations of ten vitamins (A, B1, B2, B6, B12, C, D2, D3, E and H), carotenoids and polyphenols, together with total flavonoids, sterols, lipids, proteins and carbohydrates, were compared. Moreover, antioxidant capacity and chemopreventive potential in terms inhibiting four human tumor-derived and normal cell lines proliferation were evaluated. Co-cultivation can engender biomass with emergent properties regarding bioactivity or bioactive chemical profile, depending on the combined species. The high vitamin content of C. cryptica or N. oceanica further enhanced (until 10% more) when co-cultivated, explaining the two-fold increase of the antioxidant capacity of the combined C. cryptica and N. oceanica biomass. Differently, the chemopreventive activity was valuably enhanced when coupling the two diatoms C. cryptica and S. marinoi. The results obtained in this pilot study promote microalgal co-cultivation as a valuable strategy aiming to boost their application in eco-sustainable biotechnology.

2.
Antibiotics (Basel) ; 10(6)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34202941

ABSTRACT

During the last year, science has been focusing on the research of antivirally active compounds overall after the SARS-CoV-2 pandemic, which caused a great amount of deaths and the downfall of the economy in 2020. Photosynthetic organisms such as microalgae are known to be a reservoir of bioactive secondary metabolites; this feature, coupled with the possibility of achieving very high biomass levels without excessive energetic expenses, make microalgae worthy of attention in the search for new molecules with antiviral effects. In this work, the antiviral effects of microalgae against some common human or animal viruses were considered, focusing our attention on some possible effects against SARS-CoV-2. We summed up the data from the literature on microalgae antiviral compounds, from the most common ones, such as lectins, polysaccharides and photosynthetic pigments, to the less known ones, such as unidentified proteins. We have discussed the effects of a microalgae-based genetic engineering approach against some viral diseases. We have illustrated the potential antiviral benefits of a diet enriched in microalgae.

3.
Mar Drugs ; 16(8)2018 Jul 24.
Article in English | MEDLINE | ID: mdl-30042358

ABSTRACT

Astaxanthin is a carotenoid with powerful antioxidant and anti-inflammatory activity produced by several freshwater and marine microorganisms, including bacteria, yeast, fungi, and microalgae. Due to its deep red-orange color it confers a reddish hue to the flesh of salmon, shrimps, lobsters, and crayfish that feed on astaxanthin-producing organisms, which helps protect their immune system and increase their fertility. From the nutritional point of view, astaxanthin is considered one of the strongest antioxidants in nature, due to its high scavenging potential of free radicals in the human body. Recently, astaxanthin is also receiving attention for its effect on the prevention or co-treatment of neurological pathologies, including Alzheimer and Parkinson diseases. In this review, we focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms to counteract neurological diseases, mainly based on its capability to cross the blood-brain barrier and its oxidative, anti-inflammatory, and anti-apoptotic properties.


Subject(s)
Aquatic Organisms , Neurodegenerative Diseases/prevention & control , Neuroprotective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apoptosis/drug effects , Blood-Brain Barrier/metabolism , Brain/blood supply , Brain/drug effects , Brain/metabolism , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Free Radicals/metabolism , Humans , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Oxidation-Reduction/drug effects , Xanthophylls/pharmacology , Xanthophylls/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...