Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Planet Health ; 7(8): e673-e683, 2023 08.
Article in English | MEDLINE | ID: mdl-37558348

ABSTRACT

BACKGROUND: Insecticide resistance among malaria-vector species is a pervasive problem that might jeopardise global disease-control efforts. Novel vector-control tools with different modes of action, including long-lasting insecticidal nets (LLINs) incorporating new active ingredients, are urgently needed to delay the evolution and spread of insecticide resistance. We aimed to measure phenotypic and genotypic insecticide-resistance profiles among wild Anopheles collected over 3 years to assess the longitudinal effects of dual-active-ingredient LLINs on insecticide resistance. METHODS: For this analysis, data nested in a 3-year, four parallel-arm, superiority cluster-randomised controlled trial (cRCT) in Tanzania, collected from 84 clusters (39 307 households) formed of 72 villages in the Misungwi district, were used to measure insecticide-resistance profiles among female Anopheles mosquitoes via insecticide-resistance bioassays and quantitative RT-PCR of metabolic-resistance genes. Wild, blood-fed, indoor-resting mosquitoes were collected annually during the rainy seasons from house walls in clusters from all four trial groups. Mosquitoes were morphologically identified as An gambiae sensu lato (SL) or An funestus SL before separate bioassay testing. The primary outcomes were lethal-dose values for α-cypermethrin, permethrin, and piperonyl butoxide pre-exposure plus permethrin-resistance intensity bioassays, mortality 72 h after insecticidal exposure for chlorfenapyr bioassays, fertility reduction 72 h after insecticidal exposure for pyriproxyfen bioassays, and fold change in metabolic-enzyme expression relative to an insecticide-susceptible laboratory strain. All primary outcomes were measured in An funestus SL 1 year, 2 years, and 3 years after LLIN distribution. Primary outcomes were also assessed in An gambiae SL if enough mosquitoes were collected. The cRCT is registered with ClinicalTrials.gov (NCT03554616). FINDINGS: Between May 24, 2019, and Oct 25, 2021, 47 224 female Anopheles were collected for resistance monitoring. In the pyrethroid (PY)-LLIN group, there were significant increases in α-cypermethrin-resistance intensity (year 1 LD50=9·52 vs year 2 76·20, p<0·0001) and permethrin-resistance intensity (year 1 13·27 vs year 2 35·83, p=0·0019) in An funestus SL. In the pyriproxyfen PY-LLIN group, there was similar increase in α-cypermethrin-resistance intensity (year 1 0·71 vs year 2 81·56, p<0·0001) and permethrin-resistance intensity (year 1 5·68 vs year 2 50·14, p<0·0001). In the piperonyl butoxide PY-LLIN group, α-cypermethrin-resistance intensity (year 1 33·26 vs year 3 70·22, p=0·0071) and permethrin-resistance intensity (year 1 47·09 vs year 3 2635·29, p<0·0001) also increased over time. In the chlorfenapyr PY-LLIN group, there were no effects on α-cypermethrin-resistance intensity (year 1 0·42 vs year 3 0·99, p=0·54) or permethrin-resistance intensity (data were not estimable due to nearly 100% mortality). There were also minimal reductions in chlorfenapyr susceptibility. However, in the chlorfenapyr PY-LLIN group, a significant decline in piperonyl-butoxide synergy was seen by year 3 (year 1 0·02 vs year 3 0·26, p=0·020). Highly over-expressed detoxification enzymes showed dynamic patterns of selection throughout the trial. INTERPRETATION: Our phenotypic data supports trial epidemiological findings; chlorfenapyr PY-LLINs provided superior protection from malaria across multiple transmission seasons, with few effects on insecticide-resistance selection. Rapid pyrethroid-resistance intensification in the piperonyl butoxide PY-LLIN group and pre-existing tolerance of pyriproxyfen in vector populations might explain the poorer performance of these two interventions regarding malaria outcomes. Further work is required to elucidate the potential mechanisms driving cross-resistance between pyrethroids and novel active ingredients to better inform the design of pre-emptive resistance-management strategies. FUNDING: UK Department for International Development; UK Medical Research Council; Wellcome Trust; UK Department of Health and Social Care; UK Foreign, Commonwealth and Development Office; and The Bill and Melinda Gates Foundation via the Innovative Vector Control Consortium.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Animals , Female , Humans , Insecticides/pharmacology , Insecticide Resistance/genetics , Anopheles/genetics , Permethrin/pharmacology , Piperonyl Butoxide/pharmacology , Tanzania , Malaria/prevention & control , Mosquito Vectors , Pyrethrins/pharmacology
2.
Lancet Glob Health ; 11(4): e534-e545, 2023 04.
Article in English | MEDLINE | ID: mdl-36925174

ABSTRACT

BACKGROUND: Humanitarian emergencies can lead to population displacement, food insecurity, severe health system disruptions, and malaria epidemics among individuals who are immunologically naive. We aimed to assess the impact of different vector control interventions on malaria disease burden during humanitarian emergencies. METHODS: In this systematic review and meta-analysis, we searched ten electronic databases and two clinical trial registries from database inception to Oct 19, 2020, with no restrictions on language or study design. We also searched grey literature from 59 stakeholders. Studies were eligible if the population was affected by a humanitarian emergency in a malaria endemic region. We included studies assessing any vector control intervention and in which the primary outcome of interest was malaria infection risk. Reviewers (LAM, JF-A, KC, BP, and LP) independently extracted information from eligible studies, without masking of author or publication, into a database. We did random-effects meta-analyses to calculate pooled risk ratios (RRs) for randomised controlled trials, odds ratios (ORs) for dichotomous outcomes, and incidence rate ratios (IRR) for clinical malaria in non-randomised studies. Certainty of evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. This study is registered with PROSPERO, CRD42020214961. FINDINGS: Of 12 475 studies screened, 22 studies were eligible for inclusion in our meta-analysis. All studies were conducted between Sept 1, 1989, and Dec 31, 2018, in chronic emergencies, with 616 611 participants from nine countries, evaluating seven different vector control interventions. Insecticide-treated nets significantly decreased Plasmodium falciparum incidence (RR 0·55 [95% CI 0·37-0·79]; high certainty) and Plasmodium vivax incidence (RR 0·69 [0·51-0·94]; high certainty). Evidence for an effect of indoor residual spraying on P falciparum (IRR 0·57 [95% CI 0·53-0·61]) and P vivax (IRR 0·51 [0·49-0·52]) incidence was of very low certainty. Topical repellents were associated with reductions in malaria infection (RR 0·58 [0·35-0·97]; moderate certainty). Moderate-to-high certainty evidence for an effect of insecticide-treated chaddars (equivalent to shawls or blankets) and insecticide-treated cattle on malaria outcomes was evident in some emergency settings. There was very low certainty evidence for the effect of insecticide-treated clothing. INTERPRETATION: Study findings strengthen and support WHO policy recommendations to deploy insecticide-treated nets during chronic humanitarian emergencies. There is an urgent need to evaluate and adopt novel interventions for malaria control in the acute phase of humanitarian emergencies. FUNDING: WHO Global Malaria Programme.


Subject(s)
Insecticides , Malaria, Falciparum , Malaria , Humans , Animals , Cattle , Emergencies , Malaria/epidemiology , Malaria/prevention & control , Malaria, Falciparum/epidemiology , Plasmodium falciparum
3.
Sci Rep ; 13(1): 2729, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792622

ABSTRACT

The invasion and establishment of An. stephensi mosquitoes in the Horn of Africa represents a significant regional threat, which may jeopardise malaria control, particularly in urban areas which were formally free from disease transmission. Novel vector surveillance methods are urgently needed, both agnostic to mosquito larval morphology, and simple to implement at the sampling stage. Using new multiplex TaqMan assays, specifically targeting An. stephensi and Ae. aegypti, we validated the use of environmental DNA (eDNA) for simultaneous vector detection in shared artificial breeding sites. Study findings demonstrated that An. stephensi and Ae. aegypti eDNA deposited by as few as one second instar larva in 1L of water was detectable. Characterization of molecular insecticide resistance mechanisms, using novel amplicon-sequencing panels for both vector species, was possible from eDNA shed by as few as 16-32 s instar larvae in 50 ml of water. An. stephensi eDNA, derived from emergent pupae for 24 h, was remarkably stable, and still detectable ~ 2 weeks later. eDNA surveillance has the potential to be implemented in local endemic communities and at points of country entry, to monitor the spread of invasive vector species. Further studies are required to validate the feasibility of this technique under field conditions.


Subject(s)
Aedes , Anopheles , Insecticides , Animals , Anopheles/genetics , Aedes/genetics , Larva/genetics , Mosquito Vectors/genetics , Plant Breeding
4.
Sci Rep ; 12(1): 13893, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974073

ABSTRACT

Surveillance of malaria vector species and the monitoring of insecticide resistance are essential to inform malaria control strategies and support the reduction of infections and disease. Genetic barcoding of mosquitoes is a useful tool to assist the high-throughput surveillance of insecticide resistance, discriminate between sibling species and to detect the presence of Plasmodium infections. In this study, we combined multiplex PCR, custom designed dual indexing, and Illumina next generation sequencing for high throughput single nucleotide polymorphism (SNP)-profiling of four species from the Anopheles (An.) gambiae complex (An. gambiae sensu stricto, An. coluzzii, An. arabiensis and An. melas). By amplifying and sequencing only 14 genetic fragments (500 bp each), we were able to simultaneously detect Plasmodium infection; insecticide resistance-conferring SNPs in ace1, gste2, vgsc and rdl genes; the partial sequences of nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and intergenic spacers (IGS), Short INterspersed Elements (SINE), as well as mitochondrial genes (cox1 and nd4) for species identification and genetic diversity. Using this amplicon sequencing approach with the four selected An. gambiae complex species, we identified a total of 15 non-synonymous mutations in the insecticide target genes, including previously described mutations associated with resistance and two new mutations (F1525L in vgsc and D148E in gste2). Overall, we present a reliable and cost-effective high-throughput panel for surveillance of An. gambiae complex mosquitoes in malaria endemic regions.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Anopheles/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics
5.
J Infect Dis ; 225(8): 1424-1434, 2022 04 19.
Article in English | MEDLINE | ID: mdl-33175129

ABSTRACT

BACKGROUND: Resistance to major public health insecticides in Côte d'Ivoire has intensified and now threatens the long-term effectiveness of malaria vector control interventions. METHODS: This study evaluated the bioefficacy of conventional and next-generation long-lasting insecticidal nets (LLINs), determined resistance profiles, and characterized molecular and metabolic mechanisms in wild Anopheles coluzzii from Southeast Côte d'Ivoire in 2019. RESULTS: Phenotypic resistance was intense: >25% of mosquitoes survived exposure to 10 times the doses of pyrethroids required to kill susceptible populations. Similarly, the 24-hour mortality rate with deltamethrin-only LLINs was very low and not significantly different from that with an untreated net. Sublethal pyrethroid exposure did not induce significant delayed vector mortality effects 72 hours later. In contrast, LLINs containing the synergist piperonyl butoxide, or new insecticides clothianidin and chlorfenapyr, were highly toxic to A. coluzzii. Pyrethroid-susceptible A. coluzzii were significantly more likely to be infected with malaria, compared with those that survived insecticidal exposure. Pyrethroid resistance was associated with significant overexpression of CYP6P4, CYP6P3, and CYP6Z1. CONCLUSIONS: Study findings raise concerns regarding the operational failure of standard LLINs and support the urgent deployment of vector control interventions incorporating piperonyl butoxide, chlorfenapyr, or clothianidin in areas of high resistance intensity in Côte d'Ivoire.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Animals , Cote d'Ivoire , Insecticide Resistance , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Piperonyl Butoxide/pharmacology , Pyrethrins/pharmacology
6.
Microbiol Spectr ; 9(2): e0015721, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34668745

ABSTRACT

Insecticide resistance among mosquito species is now a pervasive phenomenon that threatens to jeopardize global malaria vector control efforts. Evidence of links between the mosquito microbiota and insecticide resistance is emerging, with significant enrichment of insecticide degrading bacteria and enzymes in resistant populations. Using 16S rRNA amplicon sequencing, we characterized and compared the microbiota of Anopheles coluzzii in relation to their deltamethrin resistance and exposure profiles. Comparisons between 2- and 3-day-old deltamethrin-resistant and -susceptible mosquitoes demonstrated significant differences in microbiota diversity. Ochrobactrum, Lysinibacillus, and Stenotrophomonas genera, each of which comprised insecticide-degrading species, were significantly enriched in resistant mosquitoes. Susceptible mosquitoes had a significant reduction in alpha diversity compared to resistant individuals, with Asaia and Serratia dominating microbial profiles. There was no significant difference in deltamethrin-exposed and -unexposed 5- to 6-day-old individuals, suggesting that insecticide exposure had minimal impact on microbial composition. Serratia and Asaia were also dominant in 5- to 6-day-old mosquitoes, which had reduced microbial diversity compared to 2- to 3-day-old mosquitoes. Our findings revealed significant alterations of Anopheles coluzzii microbiota associated with deltamethrin resistance, highlighting the potential for identification of novel microbial markers for insecticide resistance surveillance. qPCR detection of Serratia and Asaia was consistent with 16S rRNA sequencing, suggesting that population-level field screening of bacterial microbiota may be feasibly integrated into wider resistance monitoring, if reliable and reproducible markers associated with phenotype can be identified. IMPORTANCE Control of insecticide-resistant vector populations remains a significant challenge to global malaria control and while substantial progress has been made elucidating key target site mutations, overexpressed detoxification enzymes and alternate gene families, the contribution of the mosquito microbiota to phenotypic insecticide resistance has been largely overlooked. We focused on determining the effects of deltamethrin resistance intensity on Anopheles coluzzii microbiota and identifying any microbial taxa associated with phenotype. We demonstrated a significant reduction in microbial diversity between deltamethrin-resistant and -susceptible mosquitoes. Insecticide degrading bacterial species belonging to Ochrobactrum, Lysinibacillus, and Stenotrophomonas genera were significantly enriched in resistant mosquitoes, while Asaia and Serratia dominated microbial profiles of susceptible individuals. Our results revealed significant alterations of Anopheles coluzzii microbiota associated with deltamethrin resistance, highlighting the potential for identification of novel microbial markers for surveillance and opportunities for designing innovative control techniques to prevent the further evolution and spread of insecticide resistance.


Subject(s)
Acetobacteraceae/metabolism , Anopheles/drug effects , Anopheles/microbiology , Insecticide Resistance/physiology , Insecticides/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Serratia/metabolism , Animals , Cote d'Ivoire , Malaria/prevention & control , Microbiota/genetics , Mosquito Vectors/drug effects , Mosquito Vectors/microbiology , RNA, Ribosomal, 16S/genetics
7.
BMJ Open ; 11(7): e046325, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34315791

ABSTRACT

INTRODUCTION: Humanitarian emergencies, of either natural or anthropogenic origins, are equivalent to major disasters, which can lead to population displacement, food insecurity and health system disruptions. Almost two-thirds of people affected by humanitarian emergencies inhabit malaria endemic regions, particularly the WHO African Region, which currently accounts for 93% and 94% of malaria cases and deaths, respectively. As of late 2020, the United Nations Refugee Agency estimates that there are globally 79.5 million forcibly displaced people, including 45.7 million internally displaced people, 26 million refugees, 4.2 million asylum-seekers and 3.6 million Venezuelans displaced abroad. METHODS AND ANALYSES: A systematic review and meta-analysis will be conducted to evaluate the impact of different vector control interventions on malaria disease burden during humanitarian emergencies. Published and grey literatures will be systematically retrieved from 10 electronic databases and 3 clinical trials registries. A systematic approach to screening, reviewing and data extraction will be applied based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Two review authors will independently assess full-text copies of potentially relevant articles based on inclusion criteria. Included studies will be assessed for risk of bias according to Cochrane and certainty of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Eligible studies with reported or measurable risk ratios or ORs with 95% CIs will be included in a meta-analysis. Subgroup analyses, including per study design, emergency phase and primary mode of intervention, may be performed if substantial heterogeneity is encountered. ETHICS AND DISSEMINATION: Ethical approval is not required by the London School of Hygiene and Tropical Medicine to perform secondary analyses of existing anonymous data. Study findings will be disseminated via open-access publications in peer-reviewed journals, presentations to stakeholders and international policy makers, and will contribute to the latest WHO guidelines for malaria control during humanitarian emergencies. PROSPERO REGISTRATION NUMBER: CRD42020214961.


Subject(s)
Emergencies , Refugees , Humans , London , Meta-Analysis as Topic , Research Design , Systematic Reviews as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...