Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ergonomics ; 47(11): 1160-79, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15370854

ABSTRACT

For application to military and civilian needs, Defence Research and Development Canada--Toronto contracted Queen's University, Kingston to develop a suite of biomechanical assessment and analytical tools to supplement human-based load carriage system assessment methods. This suite of tools permitted efficient objective evaluation of biomechanical aspects of load-bearing webbing, vests, packs and their components, and therefore contributed to early system assessment and a rapid iterative design process. This paper is a summary of five assessment and analytical tools. A dynamic load carriage simulator was developed to simulate cadence of walking, jogging and running. The simulator comprised a computer-controlled pneumatic platform that oscillated anthropometrically weighted mannequins of varying dimensions from which measures of skin contact pressure, hip reaction forces and moments and relative pack-person displacements were taken. A stiffness tester for range of motion provided force-displacement data on pack suspension systems. A biomechanical model was used to determine forces and moments on the shoulders and hips, and validated using a static load distribution mannequin. Subjective perceptual rating systems were used gather soldier feedback during a standardized mobility circuit. Objective outcome measures were validated by means of other objective measures (e.g., Optotrak, video, Instron, etc.) and then compared to subjective ratings. This approach led to development of objective performance criteria for load carriage systems and to improvements in load carriage designs that could be used both in the military and in general.


Subject(s)
Biomechanical Phenomena/instrumentation , Computer Simulation , Ergonomics , Lifting , Weight-Bearing/physiology , Canada , Humans , Military Personnel , Range of Motion, Articular/physiology
2.
Appl Ergon ; 30(2): 137-46, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10098806

ABSTRACT

This study investigated the physiological responses and performances for 20 fire fighters when completing simulated forcible entry tests. The purpose was to establish the validity of using a tire striking test and to examine the effects of varying the test parameters. The tests consisted of striking a reinforced structure and a weighted truck tire on a plywood covered table with either a 4.54 or a 5.60 kg sledge hammer. The results indicate that the simulated forcible entry tests are short in duration (range = 8.0-17.6 s), but are also physically demanding in terms of cardiovascular response (range = 86.5-97.2 for a percentage of heart rate reserve). The differences in striking a reinforced structure versus hitting a tire were insignificant according to most of the measures taken. The parameters for the simulated forcible entry test that were determined to be most appropriate were to move the tire 30 cm and use the 4.54 kg sledge hammer.


Subject(s)
Employee Performance Appraisal/methods , Physical Fitness , Psychometrics/methods , Task Performance and Analysis , Adult , Analysis of Variance , Humans , Linear Models , Male , Middle Aged , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...