Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Addit Manuf ; 392021.
Article in English | MEDLINE | ID: mdl-34249618

ABSTRACT

It is well known that changes in the starting powder can have a significant impact on the laser powder bed fusion process and subsequent part performance. Relationships between the powder particle size distribution and powder performance such as flowability and spreadability are generally known; however, links to part performance are not fully established. This study attempts to more precisely isolate the effect of particle size by using three customized batches of 17-4 PH stainless steel powders with small shifts in particle size distributions having non-intersecting cumulative size distributions, designated as Fine, Medium, and Coarse. It is found that the Fine powder has the worst overall powder performance with poor flow and raking during spreading while the Coarse powder has the best overall flow. Despite these differences in powder performance, the microstructures (i.e., porosity, grain size, phase, and crystallographic texture) of the built parts using the same process parameters are largely the same. Furthermore, the Medium powder produced parts with the highest mechanical properties (i.e., hardness and tensile strength) while the Fine and Coarse powders produced parts with effectively identical mechanical properties. Parts with good static mechanical properties can be produced from powders with a wide range of powder performance.

2.
Article in English | MEDLINE | ID: mdl-34877149

ABSTRACT

The sulfate resistance of cements used in the construction industry is traditionally assessed by measuring the expansion of a prism of 280 mm (11inch) length and 25 mm (1 inch) square cross section immersed in a sodium sulfate solution for at least one year. The duration of the experiment limits this test from being used as a performance-based determination of innovative mixtures of cementitious materials. In response to the need for a more rapid test protocol, the National Institute of Standards and Technology (NIST) has developed a new test method that measures the expansion of smaller bars (10 mm × 10 mm × 60 mm) made with neat cement paste. With these bars, similar expansion is achieved in less than 3 months, reducing the test duration by a factor of at least 4. This accelerated test method provides more rapid results consistent with the traditional test procedure, allowing for a shorter decision time and the screening of more materials.

3.
J Res Natl Inst Stand Technol ; 110(5): 529-40, 2005.
Article in English | MEDLINE | ID: mdl-27308177

ABSTRACT

External sulfate attack of concrete is a major problem that can appear in regions where concrete is exposed to soil or water containing sulfates, leading to softening and cracking of the concrete. Therefore, it is important that materials selection and proportioning of concrete in susceptible regions be carefully considered to resist sulfate attack. American Society for Testing Materials (ASTM) limits the tricalcium aluminate phase in cements when sulfate exposure is of concern. The hydration products of tricalcium aluminate react with the sulfates resulting in expansion and cracking. While ASTM standard tests are available to determine the susceptibility of cements to sulfate attack, these tests require at least 6 months and often up to a year to perform; a delay that hinders development of new cements. This paper presents a new method for testing cement resistance to sulfate attack that is three to five times faster than the current ASTM tests. Development of the procedure was based upon insights on the degradation process by petrographic examination of sulfate-exposed specimens over time. Also key to the development was the use of smaller samples and tighter environmental control.

SELECTION OF CITATIONS
SEARCH DETAIL
...