Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell Rep ; 42(12): 113564, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38100350

ABSTRACT

Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples. We found that mesenchymal TNBCs share features with mesenchymal neuroblastoma and rhabdoid tumors and that the PRRX1 transcription factor is a key driver of these tumors. PRRX1 is sufficient for inducing mesenchymal features in basal but not in luminal TNBC cells via reprogramming super-enhancer landscapes, but it is not required for mesenchymal state maintenance or for cellular viability. Our comprehensive, large-scale, multiplatform, multiomics study of both experimental and clinical TNBC is an important resource for the scientific and clinical research communities and opens venues for future investigation.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism
2.
Cancer Res ; 83(2): 264-284, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36409824

ABSTRACT

Inflammatory breast cancer (IBC) is a difficult-to-treat disease with poor clinical outcomes due to high risk of metastasis and resistance to treatment. In breast cancer, CD44+CD24- cells possess stem cell-like features and contribute to disease progression, and we previously described a CD44+CD24-pSTAT3+ breast cancer cell subpopulation that is dependent on JAK2/STAT3 signaling. Here we report that CD44+CD24- cells are the most frequent cell type in IBC and are commonly pSTAT3+. Combination of JAK2/STAT3 inhibition with paclitaxel decreased IBC xenograft growth more than either agent alone. IBC cell lines resistant to paclitaxel and doxorubicin were developed and characterized to mimic therapeutic resistance in patients. Multi-omic profiling of parental and resistant cells revealed enrichment of genes associated with lineage identity and inflammation in chemotherapy-resistant derivatives. Integrated pSTAT3 chromatin immunoprecipitation sequencing and RNA sequencing (RNA-seq) analyses showed pSTAT3 regulates genes related to inflammation and epithelial-to-mesenchymal transition (EMT) in resistant cells, as well as PDE4A, a cAMP-specific phosphodiesterase. Metabolomic characterization identified elevated cAMP signaling and CREB as a candidate therapeutic target in IBC. Investigation of cellular dynamics and heterogeneity at the single cell level during chemotherapy and acquired resistance by CyTOF and single cell RNA-seq identified mechanisms of resistance including a shift from luminal to basal/mesenchymal cell states through selection for rare preexisting subpopulations or an acquired change. Finally, combination treatment with paclitaxel and JAK2/STAT3 inhibition prevented the emergence of the mesenchymal chemo-resistant subpopulation. These results provide mechanistic rational for combination of chemotherapy with inhibition of JAK2/STAT3 signaling as a more effective therapeutic strategy in IBC. SIGNIFICANCE: Chemotherapy resistance in inflammatory breast cancer is driven by the JAK2/STAT3 pathway, in part via cAMP/PKA signaling and a cell state switch, which can be overcome using paclitaxel combined with JAK2 inhibitors.


Subject(s)
Breast Neoplasms , Inflammatory Breast Neoplasms , Humans , Female , Inflammatory Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Signal Transduction , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Stem Cells/metabolism , STAT3 Transcription Factor/metabolism
3.
Cancer Res ; 79(16): 4173-4183, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31239270

ABSTRACT

To define transcriptional dependencies of triple-negative breast cancer (TNBC), we identified transcription factors highly and specifically expressed in primary TNBCs and tested their requirement for cell growth in a panel of breast cancer cell lines. We found that EN1 (engrailed 1) is overexpressed in TNBCs and its downregulation preferentially and significantly reduced viability and tumorigenicity in TNBC cell lines. By integrating gene expression changes after EN1 downregulation with EN1 chromatin binding patterns, we identified genes involved in WNT and Hedgehog signaling, neurogenesis, and axonal guidance as direct EN1 transcriptional targets. Quantitative proteomic analyses of EN1-bound chromatin complexes revealed association with transcriptional repressors and coactivators including TLE3, TRIM24, TRIM28, and TRIM33. High expression of EN1 correlated with short overall survival and increased risk of developing brain metastases in patients with TNBC. Thus, EN1 is a prognostic marker and a potential therapeutic target in TNBC. SIGNIFICANCE: These findings show that the EN1 transcription factor regulates neurogenesis-related genes and is associated with brain metastasis in triple-negative breast cancer.


Subject(s)
Brain Neoplasms/secondary , Homeodomain Proteins/genetics , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Prognosis , Transcription Factors/genetics , Triple Negative Breast Neoplasms/genetics , Xenograft Model Antitumor Assays
5.
Cancer Cell ; 34(6): 939-953.e9, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30472020

ABSTRACT

Members of the KDM5 histone H3 lysine 4 demethylase family are associated with therapeutic resistance, including endocrine resistance in breast cancer, but the underlying mechanism is poorly defined. Here we show that genetic deletion of KDM5A/B or inhibition of KDM5 activity increases sensitivity to anti-estrogens by modulating estrogen receptor (ER) signaling and by decreasing cellular transcriptomic heterogeneity. Higher KDM5B expression levels are associated with higher transcriptomic heterogeneity and poor prognosis in ER+ breast tumors. Single-cell RNA sequencing, cellular barcoding, and mathematical modeling demonstrate that endocrine resistance is due to selection for pre-existing genetically distinct cells, while KDM5 inhibitor resistance is acquired. Our findings highlight the importance of cellular phenotypic heterogeneity in therapeutic resistance and identify KDM5A/B as key regulators of this process.


Subject(s)
Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Retinoblastoma-Binding Protein 2/genetics , Transcriptome/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Estradiol/pharmacology , Estrogen Receptor Modulators/pharmacology , Female , Fulvestrant/pharmacology , Genetic Heterogeneity , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , MCF-7 Cells , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Retinoblastoma-Binding Protein 2/metabolism , Transcriptome/drug effects , Exome Sequencing/methods
6.
Cancer Cell ; 25(6): 762-77, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24937458

ABSTRACT

Recurrent mutations in histone-modifying enzymes imply key roles in tumorigenesis, yet their functional relevance is largely unknown. Here, we show that JARID1B, encoding a histone H3 lysine 4 (H3K4) demethylase, is frequently amplified and overexpressed in luminal breast tumors and a somatic mutation in a basal-like breast cancer results in the gain of unique chromatin binding and luminal expression and splicing patterns. Downregulation of JARID1B in luminal cells induces basal genes expression and growth arrest, which is rescued by TGFß pathway inhibitors. Integrated JARID1B chromatin binding, H3K4 methylation, and expression profiles suggest a key function for JARID1B in luminal cell-specific expression programs. High luminal JARID1B activity is associated with poor outcome in patients with hormone receptor-positive breast tumors.


Subject(s)
Breast Neoplasms/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Nuclear Proteins/genetics , Oncogenes , Repressor Proteins/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CCCTC-Binding Factor , Cell Growth Processes/genetics , Cell Line, Tumor , Cell Lineage , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Histones/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , MCF-7 Cells , Mutation , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Pyrazoles/pharmacology , Pyrroles/pharmacology , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Repressor Proteins/metabolism , Transfection , Transforming Growth Factor beta/metabolism
7.
Proc Natl Acad Sci U S A ; 106(9): 3372-7, 2009 Mar 03.
Article in English | MEDLINE | ID: mdl-19218449

ABSTRACT

Epithelial-stromal cell interactions have an important role in breast tumor progression, but the molecular mechanisms underlying these effects are just beginning to be understood. We previously described that fibroblasts promote, whereas normal myoepithelial cells inhibit, the progression of ductal carcinoma in situ (DCIS) to invasive breast carcinomas by using a xenograft model of human DCIS. Here, we report that the tumor growth and progression-promoting effects of fibroblasts are at least in part due to increased COX-2 expression in tumor epithelial cells provoked by their interaction with fibroblasts. Up-regulation of COX-2 in DCIS xenografts resulted in increased VEGF and MMP14 expression, which may contribute to the larger weight and invasive histology of COX-2-expressing tumors. Administration of celecoxib, a selective COX-2 inhibitor, to tumor-bearing mice decreased xenograft tumor weight and inhibited progression to invasion. Coculture of fibroblasts with DCIS epithelial cells enhanced their motility and invasion, and this change was associated with increased MMP14 expression and MMP9 protease activity. We identified the NF-kappaB pathway as one of the mediators of stromal fibroblast-derived signals regulating COX-2 expression in tumor epithelial cells. Inhibition of NF-kappaB and COX-2 activity and down-regulation of MMP9 expression attenuated the invasion-promoting effects of fibroblasts. These findings support a role for COX-2 in promoting the progression of DCIS to invasive breast carcinomas, and suggest that therapeutic targeting of the NF-kappaB and prostaglandin signaling pathways might be used for the treatment and prevention of breast cancer.


Subject(s)
Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Carcinoma, Ductal/enzymology , Carcinoma, Ductal/pathology , Cyclooxygenase 2/metabolism , Epithelial Cells/enzymology , Stromal Cells/enzymology , Animals , Breast Neoplasms/blood supply , Breast Neoplasms/drug therapy , Carcinoma, Ductal/blood supply , Carcinoma, Ductal/drug therapy , Cell Communication , Cell Line, Tumor , Cyclooxygenase 2 Inhibitors/therapeutic use , Disease Models, Animal , Disease Progression , Female , Humans , Mice , Mice, Nude , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Neoplasm Invasiveness/pathology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
8.
Mol Endocrinol ; 21(6): 1335-58, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17440047

ABSTRACT

Accumulating evidence indicates that progestins are involved in controlling mammary gland tumorigenesis. Here, we assessed the molecular mechanisms of progestin action in breast cancer models with different phenotypes. We examined C4HD cells, an estrogen (ER) and progesterone (PR) receptor-positive murine breast cancer model in which progestins exert sustained proliferative response, the LM3 murine metastatic mammary tumor cell line, which lacks PR and ER expression, and human PR null T47D-Y breast cancer cells. In addition to acting as a transcription factor, PR can also function as an activator of signaling pathways. To explore which of these two functions were involved in progestin responses, reconstitution experiments in the PR-negative models were performed with wild-type PR-B, with a DNA binding mutant C587A-PR, and with mutant PR-BmPro, which lacks the ability to activate cytoplasm signaling pathways. We found that in a cell context either ER-positive or -negative, progestins induced cell growth and modulation of matrix metalloproteinases-9 (MMP-9) and -2 (MMP-2), and urokinase-type plasminogen activator (uPA) activities, via MAPK and phosphatidylinositol 3-kinase/Akt pathways, in cells expressing wild-type PR-B or DNA binding mutant C587A-PR. In contrast, in cells expressing mutant PR-BmPro, progestins did not induce growth. We also found that unliganded PR expression conferred breast cancer cells an in vitro less proliferative phenotype, as compared with cells lacking PR expression. Modulation of this behavior occurred when PR was functioning either as transcription factor or as signaling activator. Finally, we for the first time demonstrated that progestins favor development of breast tumor metastasis via PR function as activator of signaling pathways. Our present findings provide mechanistic support to the design of a novel therapeutic intervention in PR-positive breast tumors involving blockage of PR capacity to activate cytoplasmic signaling.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Peptide Hydrolases/metabolism , Progestins/pharmacology , Receptors, Progesterone/metabolism , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cytoplasm/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasm Metastasis , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Receptors, Progesterone/genetics , Signal Transduction , Urokinase-Type Plasminogen Activator/metabolism
9.
Cancer Invest ; 24(2): 126-31, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16537180

ABSTRACT

Mice bearing LP07 lung adenocarcinoma present some characteristics similar to those shown in patients with several malignant diseases. LP07 tumor bearers develop paraneoplastic syndromes such as cachexia, leukocytosis, and hypercalcemia, partly due to a systemic inflammatory response. We analyzed some of the mechanisms involved in the effectiveness of the association of the appetite-stimulant medroxiprogesterone acetate (MPA) and the nonselective cyclooxigenase (COX) inhibitor indomethacin (INDO) in LP07 tumor bearing mice. INDO and INDO plus MPA treatments significantly inhibited tumor growth, which was not inhibited by MPA. The number of lung metastatic nodules was decreased with all treatments, being most effective INDO alone and INDO plus MPA. A significant decrease of plasmatic levels of the matrix metalloproteinases MMP-9 and MMP-2 correlated with these results. Paraneoplastic syndromes, leukocytosis, and cachexia were abolished by all treatments. We determined effects of the treatments on circulating cytokines shown to regulate cachexia and inflammation. Both treatments alone, and INDO plus MPA, reduced circulating IL-6 throughout tumor evolution. A pronounced increase in serum IL-1ss levels was detected in untreated tumor bearers. These levels decreased and were closer to normal serum values when LP07 mice were treated with INDO plus MPA. The combination of a nonsteroidal antiinflammatory drug as INDO and MPA showed to be effective in inhibiting tumor and metastatic growth and diminishing paraneoplastic symptoms and SIR. A variety of specific molecules are implicated as playing a role in cancer-induced cachexia and hematological alterations.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols , Lung Neoplasms/drug therapy , Paraneoplastic Syndromes/prevention & control , Adenocarcinoma/complications , Adenocarcinoma/pathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Antineoplastic Agents, Hormonal/administration & dosage , Appetite Stimulants/administration & dosage , Cachexia/etiology , Cachexia/prevention & control , Enzyme-Linked Immunosorbent Assay , Female , Hypercalcemia/etiology , Hypercalcemia/prevention & control , Indomethacin/administration & dosage , Interleukin-1/blood , Interleukin-6/blood , Lung Neoplasms/complications , Lung Neoplasms/pathology , Matrix Metalloproteinase 2/blood , Matrix Metalloproteinase 2/drug effects , Matrix Metalloproteinase 9/blood , Matrix Metalloproteinase 9/drug effects , Medroxyprogesterone Acetate/administration & dosage , Mice , Mice, Inbred BALB C
10.
Int J Cancer ; 110(6): 825-30, 2004 Jul 20.
Article in English | MEDLINE | ID: mdl-15170663

ABSTRACT

Mice bearing LP07 lung adenocarcinoma show some characteristics that are similar to those present in patients with NSCLC. LP07 tumor-bearing mice develop the paraneoplastic syndromes of cachexia, leukocytosis and hypercalcemia. These symptoms may be partly due to a systemic inflammatory response. Our aim was to determine if treatment with NSAIDs would lower tumor and metastasis growth and their accompanying syndromes. The nonselective COX inhibitor indomethacin and the selective COX-2 inhibitor celecoxib reduced tumor growth and metastasis outcome in s.c. LP07 tumor-bearing mice. Both drugs also inhibited the development of leukocytosis and the weight loss associated with LP07 progression. Serum levels of the inflammatory cytokines IL-1beta and IL-6, mediators of cachexia, were modulated by NSAIDs. Inhibition of in vitro migration and invasion and reduction in angiogenesis were attained when cells were treated with either indomethacin or celecoxib. MMP-9 activity was also reduced in conditioned media from LP07 cells treated with celecoxib. These data suggest that several processes implicated in tumor progression can be modulated with NSAID treatment. Improvement in performance status through modulation of cachexia may offer a possibility for combining anti-inflammatory treatments with more aggressive therapies.


Subject(s)
Adenocarcinoma/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Lung Neoplasms/drug therapy , Paraneoplastic Syndromes/prevention & control , Adenocarcinoma/pathology , Animals , Cell Division/drug effects , Cell Survival/drug effects , Chemotaxis/drug effects , Cyclooxygenase Inhibitors/therapeutic use , Cytokines/analysis , Disease Progression , Female , Indomethacin/therapeutic use , Lactones/therapeutic use , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness/prevention & control , Sulfones
11.
J Pain Symptom Manage ; 27(1): 85-95, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14711473

ABSTRACT

Systemic syndromes characterized by a persistent activity of circulating mediators (cytokines) are frequently present with advanced cancer. We grouped under the general heading of "Systemic Immune-Metabolic Syndrome (SIMS)" a particular variety of distressing systemic syndrome characterized by dysregulation of the psycho-neuro-immune-endocrine homeostasis, with overlapping clinical manifestations. SIMS may include cachexia, anorexia, nausea, early satiety, fatigue, tumor fever, cognitive changes and superinfection. The aim of this study was to ameliorate some of the SIMS symptoms in a homogeneous group of lung adenocarcinoma patients using a multitargeted therapy. Fifteen patients with evidence of SIMS were studied. SIMS was defined as the presence of weight loss, anorexia, fatigue performance status>/=2 and acute-phase protein response. Patients received medroxyprogesterone (MPA) (500 mg twice daily), celecoxib (200 mg twice daily), plus oral food supplementation for 6 weeks. After treatment, 13 patients either had stable weight (+/- 1%) or had gained weight. There were significant differences in improvement of body-weight-change rate, nausea, early satiety, fatigue, appetite and performance status. Patients who had any kind of lung infection showed higher levels of IL-10 compared to non-infected patients (P=0.039). Our results suggest that patients with advanced lung adenocarcinoma, treated with MPA, celecoxib and dietary intervention, might have considerable improvement in certain SIMS outcomes. This multitargeted symptomatic approach deserves further study.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antineoplastic Agents/therapeutic use , Cachexia/therapy , Fatigue/therapy , Medroxyprogesterone/therapeutic use , Sulfonamides/therapeutic use , Superinfection/therapy , Adenocarcinoma/complications , Adult , Aged , Cachexia/diet therapy , Cachexia/etiology , Celecoxib , Fatigue/diet therapy , Fatigue/etiology , Female , Humans , Lung Neoplasms/complications , Male , Middle Aged , Pilot Projects , Pyrazoles , Superinfection/diet therapy , Superinfection/etiology , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...