Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 119: 597-606, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670238

ABSTRACT

There is a two-fold higher incidence of depression in females compared to men with recent studies suggesting a role for microglia in conferring this sex-dependent depression risk. In this study we investigated the nature of this relation. Using GWAS enrichment, gene-set enrichment analysis and Mendelian randomization, we found minimal evidence for a direct relation between genes functionally related to microglia and sex-dependent genetic risk for depression. We then used expression quantitative trait loci and single nucleus RNA-sequencing resources to generate polygenic scores (PGS) representative of individual variation in microglial function in the adult (UK Biobank; N = 54753-72682) and fetal (ALSPAC; N = 1452) periods. The adult microglial PGS moderated the association between BMI (UK Biobank; beta = 0.001, 95 %CI 0.0009 to 0.003, P = 7.74E-6) and financial insecurity (UK Biobank; beta = 0.001, 95 %CI 0.005 to 0.015, P = 2E-4) with depressive symptoms in females. The fetal microglia PGS moderated the association between maternal prenatal depressive symptoms and offspring depressive symptoms at 24 years in females (ALSPAC; beta = 0.04, 95 %CI 0.004 to 0.07, P = 0.03). We found no evidence for an interaction between the microglial PGS and depression risk factors in males. Our results illustrate a role for microglial function in the conferral of sex-dependent depression risk following exposure to a depression risk factor.


Subject(s)
Depression , Microglia , Humans , Microglia/metabolism , Female , Male , Depression/metabolism , Adult , Genome-Wide Association Study , Multifactorial Inheritance , Pregnancy , Sex Factors , Genetic Predisposition to Disease , Risk Factors , Quantitative Trait Loci , Gene-Environment Interaction , Young Adult , Prenatal Exposure Delayed Effects/metabolism , Sex Characteristics , Mendelian Randomization Analysis
2.
ScientificWorldJournal ; 2012: 202473, 2012.
Article in English | MEDLINE | ID: mdl-23125553

ABSTRACT

Nutrition in pregnancy, during lactation, childhood, and later stages has a fundamental influence on overall development. There is a growing research interest on the role of key dietary nutrients in fetal health. Omega-3 polyunsaturated fatty acids (n-3 LCPUFAs) play an important role in brain development and function. Evidence from animal models of dietary n-3 LCPUFAs deficiency suggests that these fatty acids promote early brain development and regulate behavioral and neurochemical aspects related to mood disorders (stress responses, depression, and aggression and growth, memory, and cognitive functions). Preclinical and clinical studies suggest the role of n-3 LCPUFAs on neurodevelopment and growth. n-3 LCPUFAs may be an effective adjunctive factor for neural development, growth, and cognitive development, but further large-scale, well-controlled trials and preclinical studies are needed to examine its clinical mechanisms and possible benefits. The present paper discusses the use of n-3 LCPUFAs during different developmental stages and the investigation of different sources of consumption. The paper summarizes the role of n-3 LCPUFAs levels during critical periods and their effects on the children's neurodevelopment, nutrition, and growth.


Subject(s)
Fatty Acids, Omega-3/metabolism , Nervous System/embryology , Nervous System/growth & development , Cognition/physiology , Female , Fetus/embryology , Fetus/metabolism , Humans , Infant, Newborn , Nervous System/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...