Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 48(4): 570-585, 2020 06.
Article in English | MEDLINE | ID: mdl-32319353

ABSTRACT

Administration of human protein-based drugs to animals often leads to formation of antidrug antibodies (ADAs) that may form circulating immune complexes (CICs) with the dosed protein. Circulating immune complexes can activate and bind complement (cCICs), and if large amount of CICs or cCICs is formed, the clearance mechanism potentially becomes saturated, which can lead to immune complex (IC) deposition and inflammation. To obtain a better understanding of the underlying factors, including the relationship between different dose regimes on IC formation and deposition and identification of possible biomarkers of IC deposition and IC-related pathological changes in kidneys, BALB/c and C57BL/6J mice were administered with human anti-tumor necrosis factor α (aTNFα, adalimumab) or a humanized anti-TNP (aTNP) antibody for 13 weeks. Particularly, ADA, CIC, cCIC formation, IC deposition, and glomerulonephritis were observed in C57BL/6J administered with aTNFα, whereas the immunologic response was minor in BALB/c mice administered with aTNFα and in BALB/c and C57BL/6J mice administered aTNP. Changing dose levels or increasing dosing frequency of aTNFα on top of an already-established CIC and cCIC response did not lead to substantial changes in CIC, cCIC formation, or IC deposition. Finally, no association between the presence of CICs or cCIC in plasma and glomerular IC deposition and/or glomerulonephritis was observed.


Subject(s)
Kidney Diseases/metabolism , Kidney Glomerulus/metabolism , Animals , Antibodies, Monoclonal , Antigen-Antibody Complex , Biomarkers/metabolism , Complement System Proteins , Glomerulonephritis , Humans , Immunoglobulin G , Kidney , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism
2.
J Immunol ; 200(3): 957-965, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29282305

ABSTRACT

Genetic absence of the urokinase-type plasminogen activator (uPA) reduces arthritis progression in the collagen-induced arthritis (CIA) mouse model to an extent just shy of disease abrogation, but this remarkable observation has not been translated into therapeutic intervention. Our aim was to test the potential in mice of an Ab that blocks the proteolytic capacity of uPA in the CIA model and the delayed-type hypersensitivity arthritis model. A second aim was to determine the cellular origins of uPA and the uPA receptor (uPAR) in joint tissue from patients with rheumatoid arthritis. A mAb that neutralizes mouse uPA significantly reduced arthritis progression in the CIA and delayed-type hypersensitivity arthritis models. In the CIA model, the impact of anti-uPA treatment was on par with the effect of blocking TNF-α by etanercept. A pharmacokinetics evaluation of the therapeutic Ab revealed target-mediated drug disposition consistent with a high turnover of endogenous uPA. The cellular expression patterns of uPA and uPAR were characterized by double immunofluorescence in the inflamed synovium from patients with rheumatoid arthritis and compared with synovium from healthy donors. The arthritic synovium showed expression of uPA and uPAR in neutrophils, macrophages, and a fraction of endothelial cells, whereas there was little or no expression in synovium from healthy donors. The data from animal models and human material provide preclinical proof-of-principle that validates uPA as a novel therapeutic target in rheumatic diseases.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Receptors, Urokinase Plasminogen Activator/metabolism , Synovial Membrane/pathology , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Animals , Antibodies, Monoclonal/immunology , Disease Models, Animal , Disease Progression , Endothelial Cells/immunology , Etanercept/pharmacology , Female , Humans , Hypersensitivity, Delayed/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Neutrophils/immunology , Synovial Membrane/immunology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism
3.
J Gastroenterol ; 51(8): 796-807, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26660730

ABSTRACT

BACKGROUND: Subunit A of coagulation factor XIII (FXIII-A) is important for clot stability and acts in the subsequent wound healing process. Loss of plasma FXIII-A has been reported after surgery, sepsis, and inflammatory conditions. In the intestinal mucosa, FXIII-A is expressed by macrophages and cellular FXIII-A has been associated with phagocytosis and migration of macrophages. The objective was to evaluate the consequences of intestinal inflammation on resident mucosal macrophages, focusing on the level and distribution of FXIII-A. METHODS: Plasma and colonic biopsies were collected from 67 patients with ulcerative colitis and controls. Intestinal samples were stained using immunohistochemistry for FXIII-A and macrophages (CD68, CD163 and iNOS). In situ hybridization were used to assess the intestinal expression of FXIII-A. FXIII-A antigen and activity levels were measured in plasma. RESULTS: Increased infiltration of CD68 positive macrophages in the inflamed mucosa coincided with increased extracellular deposited FXIII-A and decreased expression and intracellular protein levels of FXIII-A. A decreased proportion of FXIII-A/CD68/CD163 triple-positive macrophages was observed in inflamed mucosa, indicating a reduction of the M2 phenotype with consequent loss of FXIII-A. No induction of iNOS positive macrophages was observed. Stimulation of naïve monocytes with physiological concentrations of pro-inflammatory mediators negatively affected the expression of FXIII-A. Measurements in plasma confirmed the loss of both FXIII antigen and activity during active disease. CONCLUSIONS: Intestinal inflammation in UC induces loss of M2 macrophages with subsequent loss of FXIII-A synthesis. The loss of cellular FXIII-A may impact migration and phagocytosis, and hence limit pathogen eradication in UC.


Subject(s)
Colitis, Ulcerative/metabolism , Factor XIIIa/metabolism , Intestinal Mucosa/metabolism , Macrophages/metabolism , Adult , Aged , Biopsy , Case-Control Studies , Cells, Cultured , Colitis, Ulcerative/pathology , Colon/metabolism , Colon/pathology , Humans , Inflammation Mediators/pharmacology , Intestinal Mucosa/pathology , Middle Aged , Monocytes/drug effects , Monocytes/metabolism , Severity of Illness Index , Young Adult
4.
PLoS One ; 10(6): e0128113, 2015.
Article in English | MEDLINE | ID: mdl-26098308

ABSTRACT

The thrombin-activated transglutaminase factor XIII (FXIII) that covalently crosslinks and stablizes provisional fibrin matrices is also thought to support endothelial and epithelial barrier function and to control inflammatory processes. Here, gene-targeted mice lacking the FXIII catalytic A subunit were employed to directly test the hypothesis that FXIII limits colonic pathologies associated with experimental colitis. Wildtype (WT) and FXIII-/- mice were found to be comparable in their initial development of mucosal damage following exposure to dextran sulfate sodium (DSS) challenge. However, unlike FXIII-sufficient mice, FXIII-deficient cohorts failed to efficiently resolve colonic inflammatory pathologies and mucosal damage following withdrawal of DSS. Consistent with prior evidence of ongoing coagulation factor activation and consumption in individuals with active colitis, plasma FXIII levels were markedly decreased in colitis-challenged WT mice. Treatment of colitis-challenged mice with recombinant human FXIII-A zymogen significantly mitigated weight loss, intestinal bleeding, and diarrhea, regardless of whether cohorts were FXIII-sufficient or were genetically devoid of FXIII. Similarly, both qualitative and quantitative microscopic analyses of colonic tissues revealed that exogenous FXIII improved the resolution of multiple colitis disease parameters in both FXIII-/- and WT mice. The most striking differences were seen in the resolution of mucosal ulceration, the most severe histopathological manifestation of DSS-induced colitis. These findings directly demonstrate that FXIII is a significant determinant of mucosal healing and clinical outcome following inflammatory colitis induced mucosal injury and provide a proof-of-principle that clinical interventions supporting FXIII activity may be a means to limit colitis pathology and improve resolution of mucosal damage.


Subject(s)
Colitis/pathology , Factor XIII/genetics , Factor XIII/pharmacology , Intestinal Mucosa/pathology , Wound Healing/genetics , Animals , Biomarkers/blood , Colitis/chemically induced , Colon/pathology , Dextran Sulfate , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Proteins/pharmacology
5.
Blood ; 121(11): 2108-16, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23335368

ABSTRACT

Frequent infusions of intravenous factor VIII (FVIII) are required to prevent bleeding associated with hemophilia A. To reduce the treatment burden, recombinant FVIII with a longer half-life was developed without changing the protein structure. FVIII-polyethylene glycol (PEG) conjugates were prepared using an enzymatic process coupling PEG (ranging from 10 to 80 kDa) selectively to a unique O-linked glycan in the FVIII B-domain. Binding to von Willebrand factor (VWF) was maintained for all conjugates. Upon cleavage by thrombin, the B-domain and the associated PEG were released, generating activated FVIII (FVIIIa) with the same primary structure and specific activity as native FVIIIa. In both FVIII- and VWF-deficient mice, the half-life was found to increase with the size of PEG. In vivo potency and efficacy of FVIII conjugated with a 40-kDa PEG (N8-GP) and unmodified FVIII were not different. N8-GP had a longer duration of effect in FVIII-deficient mouse models, approximately a twofold prolonged half-life in mice, rabbits, and cynomolgus monkeys; however, the prolongation was less pronounced in rats. Binding capacity of N8-GP on human monocyte-derived dendritic cells was reduced compared with unmodified FVIII, resulting in several-fold reduced cellular uptake. In conclusion, N8-GP has the potential to offer efficacious prevention and treatment of bleeds in hemophilia A at reduced dosing frequency.


Subject(s)
Factor VIII/therapeutic use , Hemophilia A/drug therapy , Polyethylene Glycols/therapeutic use , Animals , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Disease Models, Animal , Factor VIII/administration & dosage , Factor VIII/metabolism , Female , Glycosylation , Hemophilia A/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/metabolism , Rabbits , Rats , Rats, Sprague-Dawley , Time Factors , Treatment Outcome
6.
Eur J Pharm Sci ; 42(5): 578-83, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21382491

ABSTRACT

AIM: NN1731 is a recombinant activated factor VII (rFVIIa) analogue with enhanced activity. The objective of the present study was to evaluate the clearance mechanisms of rFVIIa and NN1731 after intravenous administration to Beagle dogs. METHODS: The study was performed in Beagle dogs administered with a single dose of 5.4 nmol/kg rFVIIa or NN1731 intravenously. Plasma samples collected up to 12-h post-administration were analysed using three different assays to determine FVIIa clot activity (FVIIa:C), total FVIIa antigen, and levels of FVIIa-antithrombin (AT) complexes. Pharmacokinetic parameters were determined by use of standard non-compartmental and non-linear mixed effects methods. RESULTS: For both compounds, complex formation with AT accounted for the observed difference between the activity and the antigen curves and constituted 60-70% of the total clearance. The clearance of rFVIIa and NN1731 was estimated to be 73 and 214 mL/h/kg, respectively, accordingly, AT complex formation occurred around three times faster for NN1731. The difference in activity observed in the initial phase, resulting in distribution half-lives of 0.71 and 0.22 h for rFVIIa and NN1731, was mainly caused by the 3-fold difference in clearance. The terminal half-life of rFVIIa and NN1731 was estimated to be 2.1 and 2.5 h, respectively. The non-compartmental analysis resulted in almost identical parameters. CONCLUSION: The present study demonstrates that the difference between the activity and the antigen profiles of rFVIIa and NN1731 in Beagle dogs is the result of complex formation with AT which constitutes a major pathway for the clearance of rFVIIa activity.


Subject(s)
Factor VII/pharmacokinetics , Factor VIIa/pharmacokinetics , Models, Biological , Animals , Antithrombin Proteins/physiology , Blood Coagulation/drug effects , Data Interpretation, Statistical , Dogs , Factor VII/administration & dosage , Factor VII/pharmacology , Factor VIIa/administration & dosage , Factor VIIa/pharmacology , Half-Life , Injections, Intravenous , Metabolic Clearance Rate , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology
7.
Blood ; 117(12): 3445-52, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21252090

ABSTRACT

Coagulation factors VII (FVII), IX (FIX), X (FX), and protein C share the same domain organization but display very different plasma half-lives. It is plausible that the half-life is influenced by the activation peptide, differing in length and glycosylation and missing in FVII. To test this hypothesis, the influence of activation peptides on the plasma half-life of human FVII was studied by administering human FVII variants containing activation peptide motifs to mice. Insertion of the activation peptide from FX gave 4-fold longer terminal half-life (5.5 hours vs 1.4 hours for FVII), whereas the activation peptide from FIX and protein C resulted in half-lives of 4.3 and 1.7 hours, respectively. Using FX's activation peptide we identified the N-linked glycans as structural features important for the half-life. The peptide location within the FVII molecule appeared not to be critical because similar prolongation was obtained with the activation peptide inserted immediately before the normal site of activation and at the C-terminus. However, only the latter variant was activatable, yielding full amidolytic activity and reduced proteolytic activity with preserved long half-life. Our data support that activation peptides function as plasma retention signals and constitute a new manner to extend the half-life of FVII(a).


Subject(s)
Factor VII/chemistry , Factor VII/pharmacokinetics , Peptide Fragments/physiology , Plasma/metabolism , Amino Acid Motifs , Animals , Factor IX/chemistry , Factor IX/immunology , Factor IX/metabolism , Factor IX/pharmacokinetics , Factor VII/metabolism , Factor X/chemistry , Factor X/immunology , Factor X/metabolism , Factor X/pharmacokinetics , Half-Life , Humans , Male , Mice , Mutant Proteins/chemistry , Mutant Proteins/pharmacokinetics , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Peptide Fragments/immunology , Peptide Fragments/pharmacokinetics , Protein Processing, Post-Translational
8.
Br J Haematol ; 152(1): 99-107, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21083658

ABSTRACT

NN1731 is a recombinant activated factor VII (rFVIIa) analogue with increased intrinsic activity. This also applies to its reactivity towards antithrombin (AT), the role of which was investigated in a pharmacokinetic (PK) study. NN1731 or rFVIIa was administered to normal and haemophilia A dogs and elimination was measured by FVIIa clot activity, FVIIa- and FVIIa-AT antigen. In vitro AT complex formation was studied in canine plasma spiked with NN1731 or rFVIIa. Based on FVIIa antigen concentrations, PK profiles in normal and haemophilia A dogs were similar for NN1731 and rFVIIa with antigen half lives, t(½) ≈1·8 h. In contrast, PK profiles based on activity measurements were distinctly different. NN1731 induced a strong, short lasting (t(½) ≈0·5 h) pro-coagulant response, whereas rFVIIa induced a lower, longer lasting (t(½) ≈1·1 h) response. Western Blot and FVIIa-AT antigen analysis demonstrated in vivo AT complex formation that accounted for these divergences. AT complex formation with FVIIa or NN1731 in vitro in canine plasma was considerably slower than the in vivo reaction. The results suggest that in vivo inhibition by AT contributes significantly to define drug duration in haemophilia treatment with rFVIIa and in particular with the NN1731 analogue.


Subject(s)
Antithrombin Proteins/physiology , Coagulants/pharmacokinetics , Factor VII/pharmacokinetics , Hemophilia A/blood , Animals , Blood Coagulation/drug effects , Blood Coagulation Factor Inhibitors/physiology , Coagulants/antagonists & inhibitors , Disease Models, Animal , Dogs , Factor VII/antagonists & inhibitors , Factor VIIa/antagonists & inhibitors , Half-Life , Male , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/blood , Thrombelastography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...