Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 151: 106397, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266546

ABSTRACT

This research fills a knowledge gap in bone tissue engineering by examining the mechanical characteristics of scaffolds at bone-tissue interfaces utilizing a cutting-edge technique involving the creation of 3D scaffolds from Polycaprolactone (PCL). The work employs Finite element analysis to measure the scaffolds' maximum principal and Von Mises stresses and strains. CT scans of the Maxilla and Mandible were used to apply load conditions to 3D models of the upper central incisor. In the derived computational model, four different load situations considered were: the masticatory load (70-100 N at 45°), two parafunctional habits (100-130 N) and 500-550 N at the incisal edge, both at 45°), and a trauma case (800-850 N applied perpendicularly from the inwards direction at 90°). The findings revealed that the central tooth region experiences the highest stress concentration, while the Maxilla and Mandible regions show the least stress. These results provide critical insights into the mechanical behavior of scaffolds at bone-tissue interfaces, suggesting a research direction for developing scaffolds that closely mimic real bone characteristics. The results of this study are particularly significant for using bone replacement materials, providing an approach to more effective healing options for bone traumas and degenerative bone disorders.


Subject(s)
Incisor , Periodontal Ligament , Humans , Stress, Mechanical , Computer Simulation , Mandible , Finite Element Analysis , Dental Stress Analysis
3.
Pharmaceutics ; 14(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36015246

ABSTRACT

Globally, cancer is amongst the most deadly diseases due to the low efficiency of the conventional and obsolete chemotherapeutic methodologies and their many downsides. The poor aqueous solubility of most anticancer medications and their low biocompatibility make them ineligible candidates for the design of delivery systems. A significant drawback associated with chemotherapy is that there are no advanced solutions to multidrug resistance, which poses a major obstacle in cancer management. Since RNA interference (RNAi) can repress the expression of genes, it is viewed as a novel tool for advanced drug delivery. this is being explored as a promising drug targeting strategy for the treatment of multiple diseases, including cancer. However, there are many obstructions that hinder the clinical uses of siRNA drugs due to their low permeation into cells, off-target impacts, and possible unwanted immune responses under physiological circumstances. Thus, in this article, we review the design measures for siRNA conveyance frameworks and potential siRNA and miRNA drug delivery systems for malignant growth treatment, including the use of liposomes, dendrimers, and micelle-based nanovectors and functional polymer-drug delivery systems. This article sums up the advancements and challenges in the use of nanocarriers for siRNA delivery and remarkably centers around the most critical modification strategies for nanocarriers to build multifunctional siRNA and miRNA delivery vectors. In short, we hope this review will throw light on the dark areas of RNA interference, which will further open novel research arenas in the development of RNAi drugs for cancer.

4.
Materials (Basel) ; 13(18)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32933043

ABSTRACT

The worldwide, extraordinary outbreak of coronavirus pandemic (i.e., COVID-19) and other emerging viral expansions have drawn particular interest to the design and development of novel antiviral, and viricidal, agents, with a broad-spectrum of antiviral activity. The current indispensable challenge lies in the development of universal virus repudiation systems that are reusable, and capable of inactivating pathogens, thus reducing risk of infection and transmission. In this review, science-based methods, mechanisms, and procedures, which are implemented in obtaining resultant antiviral coated substrates, used in the destruction of the strains of the different viruses, are reviewed. The constituent antiviral members are classified into a few broad groups, such as polymeric materials, metal ions/metal oxides, and functional nanomaterials, based on the type of materials used at the virus contamination sites. The action mode against enveloped viruses was depicted to vindicate the antiviral mechanism. We also disclose hypothesized strategies for development of a universal and reusable virus deactivation system against the emerging COVID-19. In the surge of the current, alarming scenario of SARS-CoV-2 infections, there is a great necessity for developing highly-innovative antiviral agents to work against the viruses. We hypothesize that some of the antiviral coatings discussed here could exert an inhibitive effect on COVID-19, indicated by the results that the coatings succeeded in obtaining against other enveloped viruses. Consequently, the coatings need to be tested and authenticated, to fabricate a wide range of coated antiviral products such as masks, gowns, surgical drapes, textiles, high-touch surfaces, and other personal protective equipment, aimed at extrication from the COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...