Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomes ; 6(4)2018 Oct 06.
Article in English | MEDLINE | ID: mdl-30301203

ABSTRACT

It is well accepted that treatment of chronic pain with morphine leads to µ opioid receptor (MOR) desensitization and the development of morphine tolerance. MOR activation by the selective peptide agonist, D-Ala2, N-MePhe4, Gly-ol]-enkephalin(DAMGO), leads to robust G protein receptor kinase activation, ß-arrestin recruitment, and subsequent receptor endocytosis, which does not occur in an activation by morphine. However, MOR activation by morphine induces receptor desensitization, in a Protein kinase C (PKC) dependent manner. PKC inhibitors have been reported to decrease receptor desensitization, reduce opiate tolerance, and increase analgesia. However, the exact role of PKC in these processes is not clearly delineated. The difficulties in establishing a particular role for PKC have been, in part, due to the lack of reagents that allow the selective identification of PKC targets. Recently, we generated a conformation state-specific anti-PKC antibody that preferentially recognizes the active state of this kinase. Using this antibody to selectively isolate PKC substrates and a proteomics strategy to establish the identity of the proteins, we examined the effect of morphine treatment on the PKC targets. We found an enhanced interaction of a number of proteins with active PKC, in the presence of morphine. In this article, we discuss the role of these proteins in PKC-mediated MOR desensitization and analgesia. In addition, we posit a role for some of these proteins in mediating pain by TrKA activation, via the activation of transient receptor potential cation channel subfamily V member 1 (TRPV1). Finally, we discuss how these new PKC interacting proteins and pathways could be targeted for the treatment of pain.

2.
Curr Protoc Chem Biol ; 10(2): e42, 2018 06.
Article in English | MEDLINE | ID: mdl-29927112

ABSTRACT

The protein kinase C (PKC) family of serine/ threonine kinases has been shown to play active roles as either suppressors or promoters of carcinogenesis in different types of tumors. Using antibodies that preferentially recognize the active conformation of classical PKCs (cPKCs), we have previously shown that in breast cancer samples the expression levels of cPKCs were similar in estrogen receptor-positive (ER+ ) as compared to triple-negative tumors; however, the levels of active cPKCs were different. Determining the activation status of PKCs and other kinases in tumors may thus aid therapeutic decisions. Further, in basic science these tools may be used to understand the spatial and temporal dynamics of PKC signaling under different stimuli and for co-immunoprecipitation studies to detect binding partners and substrates of active cPKCs. In this article, we describe how monoclonal and polyclonal anti-active state PKC antibodies can be obtained using rational approaches to select bona fide epitopes through inspection of the crystal structure of classical PKCs coupled to molecular modeling studies. We believe that this methodology can be used for other kinases and multi-domain enzymes that undergo changes in their conformation upon activation. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Antibodies/chemistry , Antibodies/immunology , Protein Kinase C/chemistry , Protein Kinase C/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Catalytic Domain , Humans , Protein Conformation , Protein Kinase C/metabolism
3.
Sci Signal ; 9(420): re3, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-27016527

ABSTRACT

Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development.


Subject(s)
Computational Biology/methods , Drug Delivery Systems , Protein Kinase Inhibitors , Protein Kinases , Amino Acid Motifs , Animals , Computational Biology/trends , Drug Delivery Systems/methods , Drug Delivery Systems/trends , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinases/chemistry , Protein Kinases/metabolism , Structure-Activity Relationship , Substrate Specificity
4.
J Infect Dis ; 204(3): 478-86, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21742848

ABSTRACT

BACKGROUND: Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, which exhibits a high genetic variability. TcI, TcII, or mixed TcI/TcII strains may be found during acute human infection while mainly TcII parasites are present at the chronic stage of disease. In a previously studied Chagas disease outbreak, we identified mixed TcI/TcII strains in the vector Triatoma tibiamaculata and only TcII strains in infected humans, indicating that T. cruzi populations may be selected within the human host. METHODS: Utilizing molecular typing and cell biology techniques, we investigated the interaction of TcI, TcII, and mixed TcI/TcII strains with macrophages, an important cell population implicated in controlling protozoan infection. RESULTS: TcII but not TcI strains were selected by both human and murine macrophages in vitro and by peritoneal cavity cells in vivo. Biological analysis revealed that, compared with TcI, TcII strains display higher infective and multiplicative ability as well as lower doubling time inside macrophages. However, TcI and TcII strains present similar susceptibility to interferon-γ-activated macrophages in vitro. CONCLUSIONS: Taken together, our results reveal the existence of an intracellular selection process in macrophages that favors TcII, but not TcI, when infection occurs with vector-derived mixed TcI/TcII strains.


Subject(s)
Chagas Disease/parasitology , Macrophages/parasitology , Trypanosoma cruzi/classification , Acute Disease , Animals , Antibodies, Protozoan/immunology , Humans , Interferon-gamma/pharmacology , Macrophage Activation , Male , Mice , Mice, Inbred BALB C , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...