Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Part C Methods ; 28(5): 228-237, 2022 05.
Article in English | MEDLINE | ID: mdl-35442100

ABSTRACT

Tooth loss greatly affects a person's quality of life and many turn to dental implants to replace lost teeth. The success of a dental implant depends on the amount of alveolar bone supporting the implant, and thus, bone augmentation is often necessary to preserve or build up bone volume in the alveolar ridge. Bone can be augmented with autogenous bone, allografts, or xenografts, but the limitations of such natural bone grafts prompt researchers to develop synthetic scaffolds supplemented with cells and/or bioactive agents as alternative bone grafts. The translation of these combination scaffolds from the laboratory to the clinic requires reliable experimental models that can simulate the clinical conditions in human patients. In this article, we describe the use of a porcine alveolar defect model as a platform to evaluate the efficacy of a novel combination of a three-dimensional-printed polycaprolactone-tricalcium phosphate (PCL-TCP) scaffold and adipose-derived mesenchymal stem cells (AD-MSCs) in lateral alveolar augmentation. The surgical protocol for the defect creation and regenerative surgery, as well as analytical methods to determine the extent of tissue regeneration, are described and discussed.


Subject(s)
Alveolar Ridge Augmentation , Mesenchymal Stem Cells , Adipose Tissue , Alveolar Ridge Augmentation/methods , Animals , Bone Regeneration , Bone Transplantation/methods , Humans , Quality of Life , Swine
2.
Circulation ; 138(24): 2798-2808, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30030417

ABSTRACT

BACKGROUND: The adult mammalian heart has limited ability to repair itself after injury. Zebrafish, newts, and neonatal mice can regenerate cardiac tissue, largely by cardiac myocyte (CM) proliferation. It is unknown whether hearts of young large mammals can regenerate. METHODS: We examined the regenerative capacity of the pig heart in neonatal animals (ages 2, 3, or 14 days postnatal) after myocardial infarction or sham procedure. Myocardial scar and left ventricular function were determined by cardiac magnetic resonance imaging and echocardiography. Bromodeoxyuridine pulse-chase labeling, histology, immunohistochemistry, and Western blotting were performed to study cell proliferation, sarcomere dynamics, and cytokinesis and to quantify myocardial fibrosis. RNA-sequencing was also performed. RESULTS: After myocardial infarction, there was early and sustained recovery of cardiac function and wall thickness in the absence of fibrosis in 2-day-old pigs. In contrast, older animals developed full-thickness myocardial scarring, thinned walls, and did not recover function. Genome-wide analyses of the infarct zone revealed a strong transcriptional signature of fibrosis in 14-day-old animals that was absent in 2-day-old pigs, which instead had enrichment for cytokinesis genes. In regenerating hearts of the younger animals, up to 10% of CMs in the border zone of the myocardial infarction showed evidence of DNA replication that was associated with markers of myocyte division and sarcomere disassembly. CONCLUSIONS: Hearts of large mammals have regenerative capacity, likely driven by cardiac myocyte division, but this potential is lost immediately after birth.


Subject(s)
Heart/physiology , Myocardial Infarction/pathology , Animals , Animals, Newborn , Cytokinesis/genetics , Echocardiography , Fibrosis , Magnetic Resonance Imaging, Cine , Myocardial Infarction/diagnostic imaging , Myocardium/pathology , Myocytes, Cardiac/physiology , Regeneration , Swine , Troponin I/analysis , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...