Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 223: 116129, 2024 May.
Article in English | MEDLINE | ID: mdl-38490517

ABSTRACT

Leptin is a hormone that is secreted by adipocytes in proportion to adipose tissue size, and that informs the brain about the energy status of the body. Leptin acts through its receptor LepRb, expressed mainly in the hypothalamus, and induces a negative energy balance by potent inhibition of feeding and activation of energy expenditure. These actions have led to huge expectations for the development of therapeutic targets for metabolic complications based on leptin-derived compounds. However, the majority of patients with obesity presents elevated leptin production, suggesting that in this setting leptin is ineffective in the regulation of energy balance. This resistance to the action of leptin in obesity has led to the development of "leptin sensitizers," which have been tested in preclinical studies. Much research has focused on generating combined treatments that act on multiple levels of the gastrointestinal-brain axis. The gastrointestinal-brain axis secretes a variety of different anorexigenic signals, such as uroguanylin, glucagon-like peptide-1, amylin, or cholecystokinin, which can alleviate the resistance to leptin action. Moreover, alternative mechanism such as pharmacokinetics, proteostasis, the role of specific kinases, chaperones, ER stress and neonatal feeding modifications are also implicated in leptin resistance. This review will cover the current knowledge regarding the interaction of leptin with different endocrine factors from the gastrointestinal-brain axis and other novel mechanisms that improve leptin sensitivity in obesity.


Subject(s)
Leptin , Obesity , Humans , Infant, Newborn , Adipose Tissue/metabolism , Energy Metabolism/physiology , Hypothalamus/metabolism , Leptin/metabolism , Obesity/drug therapy , Obesity/metabolism
2.
Nat Metab ; 4(7): 901-917, 2022 07.
Article in English | MEDLINE | ID: mdl-35879461

ABSTRACT

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.


Subject(s)
Breast Feeding , Obesity , Animals , Female , Fibroblast Growth Factors , Humans , Hypothalamus/metabolism , Liver/metabolism , Mice , Obesity/metabolism , Obesity/prevention & control , Rats
3.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269579

ABSTRACT

Melanin-concentrating hormone (MCH) is a 19aa cyclic peptide exclusively expressed in the lateral hypothalamic area, which is an area of the brain involved in a large number of physiological functions and vital processes such as nutrient sensing, food intake, sleep-wake arousal, memory formation, and reproduction. However, the role of the lateral hypothalamic area in metabolic regulation stands out as the most relevant function. MCH regulates energy balance and glucose homeostasis by controlling food intake and peripheral lipid metabolism, energy expenditure, locomotor activity and brown adipose tissue thermogenesis. However, the MCH control of energy balance is a complex mechanism that involves the interaction of several neuroendocrine systems. The aim of the present work is to describe the current knowledge of the crosstalk of MCH with different endocrine factors. We also provide our view about the possible use of melanin-concentrating hormone receptor antagonists for the treatment of metabolic complications. In light of the data provided here and based on its actions and function, we believe that the MCH system emerges as an important target for the treatment of obesity and its comorbidities.


Subject(s)
Hypothalamic Hormones/metabolism , Melanins/metabolism , Neurosecretory Systems/metabolism , Obesity/metabolism , Pituitary Hormones/metabolism , Animals , Energy Metabolism , Humans , Hypothalamic Area, Lateral/metabolism , Lipid Metabolism
4.
Int J Mol Sci ; 21(16)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32784967

ABSTRACT

Mammalian, or mechanic, target of rapamycin (mTOR) signaling is a crucial factor in the regulation of the energy balance that functions as an energy sensor in the body. The present review explores how the mTOR/S6k intracellular pathway is involved in modulating the production of different signals such as ghrelin and nesfatin-1 in the gastrointestinal tract to regulate food intake and body weight. The role of gastric mTOR signaling in different physiological processes was studied in depth through different genetic models that allow the modulation of mTOR signaling in the stomach and specifically in gastric X/A type cells. It has been described that mTOR signaling in X/A-like gastric cells has a relevant role in the regulation of glucose and lipid homeostasis due to its interaction with different organs such as liver and adipose tissue. These findings highlight possible therapeutic strategies, with the gut-brain axis being one of the most promising targets in the treatment of obesity.


Subject(s)
Gastric Mucosa/metabolism , Glucose/metabolism , Glycolysis/physiology , Homeostasis/physiology , Hypothalamus/metabolism , Lipid Metabolism/physiology , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism , Adipose Tissue/metabolism , Animals , Eating/physiology , Ghrelin/metabolism , Humans , Liver/metabolism
5.
Neuroendocrinology ; 110(11-12): 1042-1054, 2020.
Article in English | MEDLINE | ID: mdl-31945763

ABSTRACT

Linaclotide is a synthetic peptide approved by the FDA for the treatment of constipation-predominant irritable bowel syndrome and chronic constipation. Linaclotide binds and activates the transmembrane receptor guanylate cyclase 2C (Gucy2c). Uroguanylin (UGN) is a 16 amino acid peptide that is mainly secreted by enterochromaffin cells in the duodenum and proximal small intestine. UGN is the endogenous ligand of Gucy2c and decreases body weight in diet-induced obese (DIO) mice via the activation of the thermogenic program in brown adipose tissue. Therefore, we wanted to evaluate whether oral linaclotide could also improve DIO mice metabolic phenotype. In this study, we have demonstrated that DIO mice orally treated with linaclotide exhibited a significant reduction of body weight without modifying food intake. Linaclotide exerts its actions through the central nervous system, and more specifically, via Gucy2c receptors located in the mediobasal hypothalamus, leading to the activation of the sympathetic nervous system to trigger the thermogenic activity of brown fat stimulating energy expenditure. These findings indicate for first time that, in addition to its effects at intestinal level to treat irritable bowel syndrome with constipation and chronic constipation, linaclotide also exerts a beneficial effect in whole body metabolism.


Subject(s)
Adipose Tissue, Brown/drug effects , Body Weight/drug effects , Eating/drug effects , Guanylyl Cyclase C Agonists/pharmacology , Hypothalamus/drug effects , Obesity/drug therapy , Peptides/pharmacology , Receptors, Enterotoxin/drug effects , Thermogenesis/drug effects , Animals , Behavior, Animal/drug effects , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL
6.
Nutrients ; 11(6)2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31207920

ABSTRACT

Angiopoietin-like protein 4 (ANGPTL-4) regulates lipidic metabolism and affects energy homeostasis. However, its function in children with obesity remains unknown. We investigated plasma ANGPTL-4 levels in children and its relationship with body mass index (BMI) and different lipidic parameters such as free fatty acids (FFA). Plasma ANGPTL-4 levels were analyzed in two different cohorts. In the first cohort (n = 150, age 3-17 years), which included children with normal weight or obesity, we performed a cross-sectional study. In the second cohort, which included only children with obesity (n = 20, age 5-18 years) followed up for two years after an intervention for weight loss, in which we performed a longitudinal study measuring ANGPTL-4 before and after BMI-loss. In the cross-sectional study, circulating ANGPTL-4 levels were lower in children with obesity than in those with normal weight. Moreover, ANGPTL-4 presented a negative correlation with BMI, waist circumference, weight, insulin, homeostasis model assessment of insulin resistance index (HOMA index), triglycerides, and leptin, and a positive correlation with FFA and vitamin-D. In the longitudinal study, the percent change in plasma ANGPTL-4 was correlated with the percent change in FFA, total-cholesterol and high-density lipoprotein cholesterol. This study reveals a significant association of ANGPTL-4 with pediatric obesity and plasma lipid profile.


Subject(s)
Angiopoietin-Like Protein 4/blood , Lipids/blood , Obesity/blood , Obesity/epidemiology , Adolescent , Body Mass Index , Child , Child, Preschool , Cross-Sectional Studies , Humans , Ideal Body Weight/physiology , Longitudinal Studies
7.
Sci Rep ; 8(1): 14541, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30266914

ABSTRACT

Uroguanylin is a 16 amino acid peptide that constitutes a key component of the gut- brain axis with special relevance in body weight regulation. In childhood and adolescence, periods of life with notable metabolic changes; limited data exist, with measurements of pro-uroguanylin in adolescence but not in prepubertal children. This study investigates pro-uroguanylin circulating levels in children with obesity and its relationship with obesity, sex and pubertal development. We analyzed circulating prouroguanylin levels in 117 children (62) and adolescents (55), including 73 with obesity and 44 with normal weight. The pro-uroguanylin concentration is higher in lean girls during pre-puberty versus lean boys (1111 vs 635, p < 0.001). During puberty, pro-uroguanylin levels are higher in lean males with respect to lean females (1060 vs 698, p < 0.01). In girls, a negative correlation exists between pro-uroguanylin and age, Tanner stage, weight, height, BMI (body mass index), waist circumference and plasma levels of leptin and testosterone; a positive correlation was found between pro-uroguanylin and free triiodothyronine. In boys, a positive correlation was found between pro-uroguanylin and BMI and waist circumference and a negative correlation was found with high density lipoprotein-cholesterol. We conclude that a sexual dimorphism exists in circulating pro-uroguanylin levels with respect to BMI. Uroguanylin presents also an opposed circulating pattern during puberty in both sexes.


Subject(s)
Natriuretic Peptides/blood , Obesity/blood , Puberty/blood , Adolescent , Body Mass Index , Child , Female , Humans , Male , Sex Characteristics , Sexual Maturation
8.
World J Gastroenterol ; 23(35): 6403-6411, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-29085189

ABSTRACT

AIM: To determine whether Nucb2/nesfatin1 production is regulated by the cannabinoid system through the intracellular mTOR pathway in the stomach. METHODS: Sprague Dawley rats were treated with vehicle, rimonabant, rapamycin or rapamycin+rimonabant. Gastric tissue obtained from the animals was used for biochemical assays: Nucb2 mRNA measurement by real time PCR, gastric Nucb2/nesfatin protein content by western blot, and gastric explants to obtain gastric secretomes. Nucb2/nesfatin levels were measured in gastric secretomes and plasma using enzyme-linked immunosorbent assay. RESULTS: The inhibition of cannabinoid receptor 1 (CB1) by the peripheral injection of an inverse agonist, namely rimonabant, decreases food intake and increases the gastric secretion and circulating levels of Nucb2/nesfatin-1. In addition, rimonabant treatment activates mTOR pathway in the stomach as showed by the increase in pmTOR/mTOR expression in gastric tissue obtained from rimonabant treated animals. These effects were confirmed by the use of a CB1 antagonist, AM281. When the intracellular pathway mTOR/S6k was inactivated by chronic treatment with rapamycin, rimonabant treatment was no longer able to stimulate the gastric secretion of Nucb2/nesfatin-1. CONCLUSION: The peripheral cannabinoid system regulates food intake through a mechanism that implies gastric production and release of Nucb2/Nesfatin-1, which is mediated by the mTOR/S6k pathway.


Subject(s)
Calcium-Binding Proteins/metabolism , Cannabinoid Receptor Antagonists/pharmacology , DNA-Binding Proteins/metabolism , Nerve Tissue Proteins/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , Calcium-Binding Proteins/blood , DNA-Binding Proteins/blood , Eating/drug effects , Enzyme-Linked Immunosorbent Assay , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Male , Models, Animal , Morpholines/pharmacology , Nerve Tissue Proteins/blood , Nucleobindins , Phosphorylation , Piperidines/pharmacology , Pyrazoles/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Ribosomal Protein S6 Kinases/metabolism , Rimonabant , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...