Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(10): e0272796, 2022.
Article in English | MEDLINE | ID: mdl-36190954

ABSTRACT

Negative numbers are central in math. However, they are abstract, hard to learn, and manipulated slower than positive numbers regardless of math ability. It suggests that confidence, namely the post-decision estimate of being correct, should be lower than positives. We asked participants to pick the larger single-digit numeral in a pair and collected their implicit confidence with button pressure (button pressure was validated with three empirical signatures of confidence). We also modeled their choices with a drift-diffusion decision model to compute the post-decision estimate of being correct. We found that participants had relatively low confidence with negative numerals. Given that participants compared with high accuracy the basic base-10 symbols (0-9), reduced confidence may be a general feature of manipulating abstract negative numerals as they produce more uncertainty than positive numerals per unit of time.


Subject(s)
Mental Processes , Humans , Mathematics
2.
Acta Psychol (Amst) ; 213: 103248, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33453615

ABSTRACT

Fractions are crucial, from math and science education to daily activities, but they are hard. A puzzling aspect of fractions is that people over-rely on the numerator when comparing a pair of fractions. Previous work has considered this numerator bias mostly as a reasoning mishap. Still, in a vast amount of pairwise comparisons, across many real-world domains, not just education textbooks, we report a high prior probability that the larger fraction has the larger numerator, and, for a relevant case, we provide formal arguments why. The existence of such a regularity suggests that the numerator bias may reflect a rational adaptation that detects and exploits likely events. In a pair of visual-proportion tasks (discrete and continuous fractions), we confirm that the numerator bias in participants adapts to experimented regularities. Even though weak education and math abilities play a role, adaptation to informative priors outside the classroom poses a challenge to educators, learners, and decision-makers.


Subject(s)
Cognition , Problem Solving , Bias , Humans , Mathematics
SELECTION OF CITATIONS
SEARCH DETAIL
...