Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973701

ABSTRACT

Changes in the abundance of certain bacterial species within the colorectal microbiota correlate with colorectal cancer (CRC) development. While carcinogenic mechanisms of single pathogenic bacteria have been characterized in vitro, limited tools are available to investigate interactions between pathogenic bacteria and both commensal microbiota and colonocytes in a physiologically relevant tumor microenvironment. To address this, we developed a microfluidic device that can be used to co-culture colonocyte spheroids and colorectal microbiota. The device was used to explore the effect of Fusobacterium nucleatum, an opportunistic pathogen associated with colorectal cancer development in humans, on colonocyte gene expression and microbiota composition. F. nucleatum altered the transcription of genes involved in cytokine production, epithelial-to-mesenchymal transition, and proliferation in colonocytes in a contact-independent manner; however, most of these effects were significantly diminished by the presence of commensal microbiota. Interestingly, F. nucleatum significantly altered the abundance of multiple bacterial clades associated with mucosal immune responses and cancer development in the colon. Our results highlight the importance of evaluating the potential carcinogenic activity of pathogens in the context of a commensal microbiota, and the potential to discover novel inter-species microbial interactions in the CRC microenvironment.

2.
Biomaterials ; 268: 120586, 2021 01.
Article in English | MEDLINE | ID: mdl-33310537

ABSTRACT

Biocompatible antibacterial coatings are highly desirable to prevent bacterial colonization on a wide range of medical devices from hip implants to skin grafts. Traditional polyelectrolytes are unable to directly form coatings with cationic antibiotics at neutral pH and suffer from high degrees of antibiotic release upon exposure to physiological concentrations of salt. Here, novel inorganic-organic hybrid polymer coatings based on direct layer-by-layer assembly of anionic polyphosphazenes (PPzs) of various degrees of fluorination with cationic antibiotics (polymyxin B, colistin, gentamicin, and neomycin) are reported. The coatings displayed low levels of antibiotic release upon exposure to salt and pH-triggered response of controlled doses of antibiotics. Importantly, coatings remained highly surface active against Escherichia coli and Staphylococcus aureus, even after 30 days of pre-exposure to physiological conditions (bacteria-free) or after repeated bacterial challenge. Moreover, coatings displayed low (<1%) hemolytic activity for both rabbit and porcine blood. Coatings deposited on either hard (Si wafers) or soft (electrospun fiber matrices) materials were non-toxic towards fibroblasts (NIH/3T3) and displayed controllable fibroblast adhesion via PPz fluorination degree. Finally, coatings showed excellent antibacterial activity in ex vivo pig skin studies. Taken together, these results suggest a new avenue to form highly tunable, biocompatible polymer coatings for medical device surfaces.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Animals , Anti-Bacterial Agents/pharmacology , Organophosphorus Compounds , Polymers , Rabbits , Staphylococcus aureus , Swine
3.
Methods Mol Biol ; 1729: 47-59, 2018.
Article in English | MEDLINE | ID: mdl-29429081

ABSTRACT

Microfluidic technology allows fast and precise measurement of chemotaxis responses to both attractant and repellent signals. One of the major drawbacks of current microfluidic chemotaxis assays is the presence of bacterial cells within the concentration gradient flow field, which has the potential for flow effects masking the chemotaxis response. This chapter describes a new microfluidic device for producing stable concentration gradients and measuring the response of cells to the gradient without exposing them to any flow. Unlike other methods described in the literature, this method is capable of producing gradients of any shape, almost instantaneously, allowing the measurement of time-dependent response of cells to a variety of signals.


Subject(s)
Chemotaxis , Escherichia coli/physiology , Microfluidic Analytical Techniques/instrumentation , Equipment Design , Lab-On-A-Chip Devices , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...