Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Virol ; 70(3): 1981-9, 1996 Mar.
Article in English | MEDLINE | ID: mdl-8627724

ABSTRACT

The consensus sequence of the Sindbis virus AR339 isolate, the prototype alphavirus, has been deduced. THe results presented here suggest (i) that a substantial proportion of the sequence divergence evident between the consensus sequence and sequences of laboratory strains of AR339 has resulted from selection for efficient growth in cell culture, (ii) that many of these changes affect the virulence of the virus in animal models, and (iii) that such modified genetic backgrounds present in laboratory strains can exert a significant influence on genetic studies of virus pathogenesis and host range. A laboratory strain of Sindbis virus AR339 was sequenced and cloned as a cDNA (pTRSB) from which infectious virus (TRSB) could be derived. The consensus sequence was deduced from the complete sequences of pTRSB and HRsp (E. G. Strauss, C. M. Rice, and J. H. Strauss, Virology 133:92-110, 1984), from partial sequences of the glycoprotein genes of three other AR339 laboratory strains, and by comparison with the sequences of the glycoprotein genes of three other AR339 sequence. HRsp differed form the consensus sequence by eight coding changes, and TRSB differed by three coding changes. In the 5' untranslated region, HRsp differed from the consensus sequence at nucleotide (nt) 5. These differences were likely the result of cell culture passage of the original AR339 isolate. At three of the difference loci (one in TRSB and two in HRsp), selection of cell-culture-adaptive mutations was documented with Sindbis virus or other alphaviruses. Selection in cell culture often results in attenuation of virulence in animals. Considering the TRSB and HRsp sequences together, one noncoding difference from the consensus (an A-for-G substitution in the 5' untranslated region at nt 5) and six coding differences in the glycoprotein genes (at E2 amino acids 1, 3, 70, and 172 and at E1 amino acids 72 and 237) were at loci which, either individually or in combination, significantly affected alphavirus virulence in mice. Although the levels of virulence of isogenic strains containing either nt 5 A or nt 5 G did not differ significantly in neonatal mice, the presence of nt 5 A greatly enhanced the effect of a second attenuating mutation in the E2 gene. These results suggest that minimal differences in the "wild type" genetic background into which an additional mutation is introduced can have a dramatic effect on apparent virulence and pathogenesis phenotypes. A cDNA clone of the consensus AR339 sequence, a sequence devoid of occult attenuating mutations introduced by cell culture passage, will allow the molecular genetic examination of cell culture and in vivo phenotypes of a virus which may best reflect the sequence of Sindbis virus AR339 at the time of its isolation.


Subject(s)
Consensus Sequence , Sindbis Virus/genetics , Alphavirus Infections/virology , Animals , Arginine/metabolism , Base Sequence , Cell Line , Cells, Cultured , Cricetinae , DNA, Viral , Mice , Molecular Sequence Data , Mutation , Phenotype , Sindbis Virus/metabolism , Sindbis Virus/pathogenicity , Viral Envelope Proteins/genetics , Virulence/genetics
2.
Virology ; 175(1): 41-9, 1990 Mar.
Article in English | MEDLINE | ID: mdl-2309450

ABSTRACT

The Sindbis virus mutant SB-RL, in contrast to its parent, Sindbis strain AR339 (SB), is attenuated in neonatal mice, has an increased rate of penetration in tissue culture cells, and is more sensitive to neutralization by E2-specific monoclonal antibodies (MCAbs) R6 and R13. These phenotypic differences are controlled by substitution of an arginine for serine at amino acid 114 of the E2 glycoprotein. To explore these relationships further, MCAb R6 and R13 neutralization escape mutants of both SB and SB-RL were isolated and characterized. All mutants bound both MCAb R6 and R13 significantly less effectively in ELISA, and were more resistant to complement-mediated neutralization than their respective parental strains. Single coding changes in the E2 glycoprotein gene of each 11 mutants were identified. SB/R6, SB/R13, and SB-RL/R13 mutants contained a mutation at either E2 codon 96 or 159. SB-RL/R6 mutants contained changes at E2 codon 62, 96, or 159. These coding changes included two intragenic suppressor mutations. Mutation of E2 codon 159 from lysine to glutamate or codon 62 from asparagine to aspartate suppressed the attenuated phenotype conferred by E2 arginine 114 in SB-RL. However, only the change at E2 codon 62 significantly suppressed the rapid penetration phenotype of SB-RL. Mutation in E2 codon 96 of SB, replacing tyrosine with histidine, reduced the virulence of SB for neonatal mice but had no effect on penetration of cultured cells. Therefore, mutation in E2 codons 62, 96, 114, or 159 affected both virulence in animals and the binding or biological activity of these E2c-specific MCAbs. These results suggest that an E2 antigenic site (E2c), defined by MCAbs R6 and R13, is conformational in nature and may constitute a surface domain on Sindbis virions important for virulence in neonatal mice.


Subject(s)
Antibodies, Monoclonal , Antigens, Viral/genetics , Glycoproteins/genetics , Sindbis Virus/genetics , Animals , Animals, Newborn , Cell Line , Codon , Enzyme-Linked Immunosorbent Assay , Genes, Viral , Glycoproteins/immunology , Mice , Neutralization Tests , Sindbis Virus/immunology , Sindbis Virus/pathogenicity , Suppression, Genetic , Virulence
3.
Virology ; 161(1): 101-8, 1987 Nov.
Article in English | MEDLINE | ID: mdl-2445100

ABSTRACT

Experiments with monoclonal antibodies raised against two laboratory strains of Sindbis virus, SB and SIN, suggested the existence of a strain-specific neutralizing antigenic site (E2-b) on the E2 glycoprotein. A comparison of monoclonal antibody binding patterns and E2 glycoprotein gene sequences of six laboratory strains distinguished three different configurations of E2-b that correlated with specific amino acid substitutions at position 216 of the E2 glycoprotein. Further study of neutralization escape mutants selected with E2-b-specific antibodies confirmed that amino acid 216 is a major determinant of the E2-b antigenic site. Eight of nine mutants showed a coding change at position 216. One neutralization escape mutation created a new glycosylation site at position 213 and resulted in an E2 protein with an altered migration rate in SDS-PAGE. The neutralization escape mutants studied included amino acid substitutions not found in the laboratory strains that revealed differing binding requirements for two E2-b-specific monoclonal antibodies. The E2-b site is contrasted with the E2-c neutralizing antigenic site described previously (R.A. Olmsted, W.J. Meyer, and R.E. Johnston, 1986, Virology 148, 245-254).


Subject(s)
Antigens, Viral/immunology , Glycoproteins/immunology , Sindbis Virus/immunology , Viral Envelope Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Base Sequence , Binding, Competitive , Cell Line , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Epitopes , Genes, Viral , Glycoproteins/genetics , Mutation , RNA, Viral/genetics , Sindbis Virus/genetics , Species Specificity , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...