Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int Genet ; 27: 106-115, 2017 03.
Article in English | MEDLINE | ID: mdl-28033530

ABSTRACT

Illegal trading of ivory is mainly responsible for the dramatic decline in elephant populations. Thailand is one of the largest laundering hotspots for African ivory, as the domestic Asian elephant ivory can be legally traded. So, to help combat ivory poaching and smuggling, an efficient method is needed to identify the elephant species from its ivory and ivory products. In this study, a mini-SNaPshot® multiplex assay was developed and fully validated for the identification of confiscated ivory and low DNA template ivory products. Elephantid- and elephant species-specific mitochondrial single nucleotide polymorphisms (SNPs) were identified from 207 mammalian and 1705 elephant/mammoth cytochrome b sequence alignments. Seven informative SNPs were used for assay development. The assay unambiguously and accurately identified authentic elephant ivory and its species of origin on the basis of peak size and color observed in the haplotype profile. The assay was highly efficient for analysis of confiscated ivory and low-template ivory products with a 99.29% success rate (N=140). It was highly reproducible, exhibited no cross-reaction with eight other mammalian DNA; and had 100% identification accuracy. In addition, nested and direct PCR amplification were also compatible with the developed assay. This efficient assay should benefit wildlife forensic laboratories and aid in the prosecution of elephant-related crimes.


Subject(s)
Cytochromes b/genetics , DNA Fingerprinting , DNA, Mitochondrial/genetics , Elephants/genetics , Polymorphism, Single Nucleotide , Animals , Commerce/legislation & jurisprudence , Conservation of Natural Resources/legislation & jurisprudence , Crime/legislation & jurisprudence , Humans , Multiplex Polymerase Chain Reaction , Reproducibility of Results , Species Specificity
2.
Electrophoresis ; 37(23-24): 3068-3075, 2016 12.
Article in English | MEDLINE | ID: mdl-27754560

ABSTRACT

Despite continuous conservation efforts by national and international organizations, the populations of the three extant elephant species are still dramatically declining due to the illegal trade in ivory leading to the killing of elephants. A requirement to aid investigations and prosecutions is the accurate identification of the elephant species from which the ivory was removed. We report on the development of the first fully validated multiplex PCR-electrophoresis assay for ivory DNA analysis that can be used as a screening or confirmatory test. SNPs from the NADH dehydrogenase 5 and cytochrome b gene loci were identified and used in the development of the assay. The three extant elephant species could be identified based on three peaks/bands. Elephas maximus exhibited two distinct PCR fragments at approximate 129 and 381 bp; Loxodonta cyclotis showed two PCR fragments at 89 and 129 bp; and Loxodonta africana showed a single fragment of 129 bp. The assay correctly identified the elephant species using all 113 ivory and blood samples used in this report. We also report on the high sensitivity and specificity of the assay. All single-blinded samples were correctly classified, which demonstrated the assay's ability to be used for real casework. In addition, the assay could be used in conjunction with the technique of direct amplification. We propose that the test will benefit wildlife forensic laboratories and aid in the transition to the criminal justice system.


Subject(s)
Animal Structures/chemistry , Electrophoresis, Capillary/methods , Elephants/classification , Elephants/genetics , Multiplex Polymerase Chain Reaction/methods , Tooth/chemistry , Animals , Cytochromes b/genetics , Electrophoresis, Agar Gel , Elephants/anatomy & histology , Limit of Detection , NADH Dehydrogenase/genetics , Reproducibility of Results
3.
Forensic Sci Int ; 267: 210-217, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27643759

ABSTRACT

Demand for ivory and expansion of human settlements have resulted in a rapid decline in the number of elephants. Enforcement of local and international laws and regulations requires identification of the species from which any ivory, or ivory products, originated. Further geographical assignment of the dead elephant from which the ivory was taken can assist in forensic investigations. In this study, a real-time PCR assay using melt curve analysis was developed and fully validated for forensic use. The presence or absence of three Elephantidae-specific and elephant species-specific melting peaks was used to identify the elephant species. Using 141 blood and ivory samples from the three extant elephant species, the assay demonstrated very high reproducibility and accuracy. The limit of detection was as low as 0.031ng of input DNA for conventional amplification and 0.002ng for nested amplification. Both DNA concentrations are typically encountered in forensic casework, especially for degraded samples. No cross-reactivity was observed for non-target species. Evaluation of direct amplification and nested amplification demonstrated the assay's flexibility and capability of analyzing low-template DNA samples and aged samples. Additionally, blind trial testing showed the assay's suitability application in real casework. In conclusion, wildlife forensic laboratories could use this novel, quick, and low-cost assay to help combat the continuing poaching crises leading to the collapse of elephant numbers in the wild.


Subject(s)
Conservation of Natural Resources , Crime , DNA Fingerprinting , Elephants/genetics , Real-Time Polymerase Chain Reaction , Animals , Polymorphism, Single Nucleotide , Reproducibility of Results , Species Specificity , Transition Temperature
4.
Sci Rep ; 6: 24845, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27097717

ABSTRACT

We describe the use of handheld X-ray fluorescence, for elephant tusk species identification. Asian (n = 72) and African (n = 85) elephant tusks were scanned and we utilized the species differences in elemental composition to develop a functional model differentiating between species with high precision. Spatially, the majority of measured elements (n = 26) exhibited a homogeneous distribution in cross-section, but a more heterologous pattern in the longitudinal direction. Twenty-one of twenty four elements differed between Asian and African samples. Data were subjected to hierarchical cluster analysis followed by a stepwise discriminant analysis, which identified elements for the functional equation. The best equation consisted of ratios of Si, S, Cl, Ti, Mn, Ag, Sb and W, with Zr as the denominator. Next, Bayesian binary regression model analysis was conducted to predict the probability that a tusk would be of African origin. A cut-off value was established to improve discrimination. This Bayesian hybrid classification model was then validated by scanning an additional 30 Asian and 41 African tusks, which showed high accuracy (94%) and precision (95%) rates. We conclude that handheld XRF is an accurate, non-invasive method to discriminate origin of elephant tusks provides rapid results applicable to use in the field.


Subject(s)
Elephants , Fluorescence , Fluorometry , X-Rays , Africa , Animals , Asia , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...