ABSTRACT
Abstract Introduction Alterations in endolymphatic pressure have long been suspected of being associated with the development of endolymphatic hydrops and rupture of the membranous labyrinth. More recently, there has been a focus on how membrane mechanics might contribute to membrane rupture. This is suspected to involve the viscoelastoplastic properties of these membranes. Objective To construct a rupture risk envelope for the cochleo-saccular membranes based on viscoelastoplasticity to provide insight into lesion behavior in Meniere disease. Methods Reported deformation data from a collagen model of the cochleo-saccular membranes was utilized. Yield stress was defined as 80% of ultimate failure stress. The yield points at various strain rates were used to construct a rupture risk envelope for the membranes. Results The rupture risk envelope was found to be downward sloping in configuration. At the highest strain rate of 385% per minute, the membrane yield was associated with greater stress (7.0 kPa) and lesser strain (30%); while at the lowest strain rate of 19.2% per minute, there was substantially less membrane yield stress (4.3 kPa) but it was associated with greater strain (44%). Conclusion The concept of a rupture risk envelope based on viscoelastoplasticity provides insight into hydropic lesion behavior in Meniere disease. This concept helps to explain how variations in membrane distensibility might occur as suspected in the double hit theory of lesion generation in Meniere disease. Slowly developing lesions would appear have a lower rupture risk while rapidly developing lesions would appear to have a greater risk of early membrane rupture.
ABSTRACT
Introduction Alterations in endolymphatic pressure have long been suspected of being associated with the development of endolymphatic hydrops and rupture of the membranous labyrinth. More recently, there has been a focus on how membrane mechanics might contribute to membrane rupture. This is suspected to involve the viscoelastoplastic properties of these membranes. Objective To construct a rupture risk envelope for the cochleo-saccular membranes based on viscoelastoplasticity to provide insight into lesion behavior in Meniere disease. Methods Reported deformation data from a collagen model of the cochleo-saccular membranes was utilized. Yield stress was defined as 80% of ultimate failure stress. The yield points at various strain rates were used to construct a rupture risk envelope for the membranes. Results The rupture risk envelope was found to be downward sloping in configuration. At the highest strain rate of 385% per minute, the membrane yield was associated with greater stress (7.0 kPa) and lesser strain (30%); while at the lowest strain rate of 19.2% per minute, there was substantially less membrane yield stress (4.3 kPa) but it was associated with greater strain (44%). Conclusion The concept of a rupture risk envelope based on viscoelastoplasticity provides insight into hydropic lesion behavior in Meniere disease. This concept helps to explain how variations in membrane distensibility might occur as suspected in the double hit theory of lesion generation in Meniere disease. Slowly developing lesions would appear have a lower rupture risk while rapidly developing lesions would appear to have a greater risk of early membrane rupture.
ABSTRACT
Introduction Grossly displaced membranes are characteristic of endolymphatic hydrops. The process whereby physiological membrane displacement becomes pathological may be mediated by stress, but the membrane biomechanics underlying this transition are unclear. Objective This study seeks to determine the role of suspensory tethers during pressure-induced membrane displacement in the generation of the membranous lesions seen in this disease entity using a biomechanical model approach. Methods The location of membrane suspensory tethers was identified histologically. The influence of tethers on model membrane configuration during displacement was assessed graphically. The relationship of membrane configuration during displacement to curvature radius was quantified trigonometrically. The relationship of curvature radius to stress susceptibility was determined mathematically. The net effect of suspensory tethers on membrane stress levels for various degrees of membrane distention and displacement was then calculated numerically. Results In the inferior labyrinth, suspensory tethers are found to occur on the membranes' boundaries. Such tethering is found to impose a biphasic effect on membrane curvature with increasing degrees of displacement. As a consequence, tensile stress susceptibility is found to decline with initial membrane displacement to a critical point nadir beyond which stress then increases monotonically. No such effect was found for the superior labyrinth. Conclusion Boundary tethers in the inferior labyrinth are associated with significant tensile stress reductions until a critical point of membrane displacement is reached. Displacements short of the critical point may be physiological and even reversible, whereas such displacements beyond the critical point are apt to be overtly hydropic and irreversible.
ABSTRACT
Abstract Introduction Grossly displaced membranes are characteristic of endolymphatic hydrops. The process whereby physiological membrane displacement becomes pathological may be mediated by stress, but the membrane biomechanics underlying this transition are unclear. Objective This study seeks to determine the role of suspensory tethers during pressure-induced membrane displacement in the generation of the membranous lesions seen in this disease entity using a biomechanical model approach. Methods The location of membrane suspensory tethers was identified histologically. The influence of tethers on model membrane configuration during displacement was assessed graphically. The relationship of membrane configuration during displacement to curvature radius was quantified trigonometrically. The relationship of curvature radius to stress susceptibility was determined mathematically. The net effect of suspensory tethers on membrane stress levels for various degrees of membrane distention and displacement was then calculated numerically. Results In the inferior labyrinth, suspensory tethers are found to occur on the membranes' boundaries. Such tethering is found to impose a biphasic effect on membrane curvature with increasing degrees of displacement. As a consequence, tensile stress susceptibility is found to decline with initial membrane displacement to a critical point nadir beyond which stress then increases monotonically. No such effect was found for the superior labyrinth. Conclusion Boundary tethers in the inferior labyrinth are associated with significant tensile stress reductions until a critical point of membrane displacement is reached. Displacements short of the critical pointmay be physiological and even reversible,whereas such displacements beyond the critical point are apt to be overtly hydropic and irreversible.
Subject(s)
Humans , Tympanic Membrane Perforation/physiopathology , Endolymphatic Hydrops/physiopathology , Stress, Mechanical , Biomechanical Phenomena , Cochlea/physiopathology , Flexural Strength/physiology , Ear, Inner/physiopathologyABSTRACT
Introduction The nature and extent of membrane damage encountered in Meniere disease remains unexplained. Pressure-induced membrane stress may underlie the characteristic hydropic distention. Analysis of stress in the several vestibular chambers may offer insight into the nature and progression of Meniere disease. Objective Membrane stress levels will be assessed by constructing a specific model of the human membranous labyrinth through the application of human dimensions to an existing generic model of the mammalian labyrinth. Methods Nominal dimensions for a model of the human membranous labyrinth were obtained from fixed human tissue. Stress proclivities were calculated and normalized based on shell theory applied to the various geometric figures comprising the model. Results Normalized peak stress levels were projected to be highest in the saccule (38.8), followed by the utricle (5.4), then ampulla (2.4), and lowest in the canal system (1.0). These results reflect macrostructural variations in membrane shape, size, and thickness among the several chambers of the labyrinth. These decreasing stress proclivities parallel the decreasing frequency of histologic lesions found in documented cases of Meniere disease. Conclusions This model analysis of a human membranous labyrinth indicates that substantial disparities in stress exist among the several vestibular chambers due to macrostructural membrane configuration. Low stress levels in the canals are the result of thick highly curved membranes, and the high levels computed for the saccule reflect its thin and relatively flat membranes. These findings suggest that chamber configuration may be a factor controlling the progression of endolymphatic hydrops in Meniere disease.(AU)
Subject(s)
Labyrinth Diseases/etiology , Meniere DiseaseABSTRACT
Introduction The nature and extent of membrane damage encountered in Meniere disease remains unexplained. Pressure-induced membrane stress may underlie the characteristic hydropic distention. Analysis of stress in the several vestibular chambers may offer insight into the nature and progression of Meniere disease. Objective Membrane stress levels will be assessed by constructing a specific model of the human membranous labyrinth through the application of human dimensions to an existing generic model of the mammalian labyrinth. Methods Nominal dimensions for a model of the human membranous labyrinth were obtained from fixed human tissue. Stress proclivities were calculated and normalized based on shell theory applied to the various geometric figures comprising the model. Results Normalized peak stress levels were projected to be highest in the saccule (38.8), followed by the utricle (5.4), then ampulla (2.4), and lowest in the canal system (1.0). These results reflect macrostructural variations in membrane shape, size, and thickness among the several chambers of the labyrinth. These decreasing stress proclivities parallel the decreasing frequency of histologic lesions found in documented cases of Meniere disease. Conclusions This model analysis of a human membranous labyrinth indicates that substantial disparities in stress exist among the several vestibular chambers due to macrostructural membrane configuration. Low stress levels in the canals are the result of thick highly curved membranes, and the high levels computed for the saccule reflect its thin and relatively flat membranes. These findings suggest that chamber configuration may be a factor controlling the progression of endolymphatic hydrops in Meniere disease.
ABSTRACT
Introduction The membranes of the inferior division of the labyrinth in some mammals appear more vulnerable to hydropic distention than those of the superior division. This finding in guinea pigs, cats, and humans has been attributed to the evidently thinner membranes with implied higher stress levels. Objective The objective of this study is to identify other configurational features, if any, that may contribute to membrane stress proclivity and therefore might act to augment or ameliorate stress in the several chambers of the membranous labyrinth. Methods Stress proclivity can be investigated using shell theory to analyze a geometric model of the labyrinthine membranes in mammals. Such an approach can provide the necessary mathematical descriptions of stress in each chamber of the labyrinth. Results Stress proclivity depends on three physical features: membrane thickness, radial size, and chamber shape. Lower stress proclivities are projected for smaller chambers with thick, highly synclastic membranes. Higher stress levels are projected for larger chambers with thin, flat, or anticlastic membranes. Conclusions In the mammalian labyrinth, pars superior chambers exhibit permutations of membrane thickness, size, and favorable shapes that reduce stress proclivity. In contrast, the pars inferior chambers are characterized by thin membranes with flat contours and adverse shapes that make them especially vulnerable to hydropic distention.
ABSTRACT
Introduction: The membranes of the inferior division of the labyrinth in some mammals appear more vulnerable to hydropic distention than those of the superior division. This finding in guinea pigs, cats, and humans has been attributed to the evidently thinner membranes with implied higher stress levels. Objective: The objective of this study is to identify other configurational features, if any, that may contribute to membrane stress proclivity and therefore might act to augment or ameliorate stress in the several chambers of the membranous labyrinth. Methods: Stress proclivity can be investigated using shell theory to analyze a geometric model of the labyrinthine membranes in mammals. Such an approach can provide the necessary mathematical descriptions of stress in each chamber of the labyrinth. Results Stress proclivity depends on three physical features: membrane thickness, radial size, and chamber shape. Lower stress proclivities are projected for smaller chambers with thick, highly synclastic membranes. Higher stress levels are projected for larger chambers with thin, flat, or anticlastic membranes. Conclusions: In the mammalian labyrinth, pars superior chambers exhibit permutations of membrane thickness, size, and favorable shapes that reduce stress proclivity. In contrast, the pars inferior chambers are characterized by thin membranes with flat contours and adverse shapes that make them especially vulnerable to hydropic distention...