Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 34(34): 10092-10101, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30064213

ABSTRACT

We report an investigation of the influence of aqueous solutions of amphiphilic oligomers on the ordering of micrometer-thick films of thermotropic liquid crystals (LCs), thus addressing the gap in knowledge arising from previous studies of the interactions of monomeric and polymeric amphiphiles with LCs. Specifically, we synthesized amphiphilic oligomers (with decyl hydrophobic and pentaethylene glycol hydrophilic domains) in monomer, dimer, and trimer forms, and incubated aqueous solutions of the oligomers against nematic films of 4'-pentyl-4-biphenylcarbonitrile (5CB). All amphiphilic oligomers caused sequential surface-driven orientational (planar to homeotropic) and then bulk phase transitions (nematic to isotropic) with dynamics depending strongly on the degree of oligomerization. The dynamics of the orientational transitions accelerated from monomer to trimer, consistent with the effects of an increase in adsorption free energy. The mechanism underlying the orientational transition, however, involved a decrease in anchoring energy and not change in the easy axis of the LC. In contrast, the rate of the phase transition induced by absorption of oligomers into the LC decreased from monomer to trimer, suggesting that constraints on configurational degrees of freedom influence the absorption free energies of the oligomers. Interestingly, the oligomer-induced transition from the nematic to isotropic phase of 5CB was observed to nucleate at the aqueous-5CB interface, consistent with surface-induced disorder underlying the above-reported decrease in anchoring energy caused by the oligomers. Finally, we provided proof-of-concept experiments of the triggering of LCs using a trimeric amphiphile that is photocleaved by UV illumination into monomeric fragments. Overall, our results provide insight into the rational design of oligomers that can be used as triggers to create responsive LCs.

2.
Phys Rev E ; 96(1-1): 012706, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29347110

ABSTRACT

A long time ago, Brochard and de Gennes predicted the possibility of significantly decreasing the critical magnetic field of the Fredericksz transition (the magnetic Fredericksz threshold) in a mixture of nematic liquid crystals and ferromagnetic particles, the so-called ferronematics. This phenomenon is rarely measured to be large, due to soft homeotropic anchoring induced at the nanoparticle surface. Here we present an optical study of the magnetic Fredericksz transition combined with a light scattering study of the classical nematic liquid crystal: the pentylcyanobiphenyl (5CB), doped with 6 nm diameter magnetic and nonmagnetic nanoparticles. Surprisingly, for both nanoparticles, we observe at room temperature a net decrease of the threshold field of the Fredericksz transition at low nanoparticle concentrations, which appears associated with a coating of the nanoparticles by a brush of polydimethylsiloxane copolymer chains inducing planar anchoring of the director on the nanoparticle surface. Moreover, the magnetic Fredericksz threshold exhibits nonmonotonic behavior as a function of the nanoparticle concentration for both types of nanoparticles, first decreasing down to a value from 23% to 31% below that of pure 5CB, then increasing with a further increase of nanoparticle concentration. This is interpreted as an aggregation starting at around 0.02 weight fraction that consumes more isolated nanoparticles than those introduced when the concentration is increased above c=0.05 weight fraction (volume fraction 3.5×10^{-2}). This shows the larger effect of isolated nanoparticles on the threshold with respect to aggregates. From dynamic light scattering measurements we deduced that, if the decrease of the magnetic threshold when the nanoparticle concentration increases is similar for both kinds of nanoparticles, the origin of this decrease is different for magnetic and nonmagnetic nanoparticles. For nonmagnetic nanoparticles, the behavior may be associated with a decrease of the elastic constant due to weak planar anchoring. For magnetic nanoparticles there are non-negligible local magnetic interactions between liquid crystal molecules and magnetic nanoparticles, leading to an increase of the average order parameter. This magnetic interaction thus favors an easier liquid crystal director rotation in the presence of external magnetic field, able to reorient the magnetic moments of the nanoparticles along with the molecules.

3.
Proc Natl Acad Sci U S A ; 113(20): 5564-9, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27140607

ABSTRACT

Liquid crystals (LCs), because of their long-range molecular ordering, are anisotropic, elastic fluids. Herein, we report that elastic stresses imparted by nematic LCs can dynamically shape soft colloids and tune their physical properties. Specifically, we use giant unilamellar vesicles (GUVs) as soft colloids and explore the interplay of mechanical strain when the GUVs are confined within aqueous chromonic LC phases. Accompanying thermal quenching from isotropic to LC phases, we observe the elasticity of the LC phases to transform initially spherical GUVs (diameters of 2-50 µm) into two distinct populations of GUVs with spindle-like shapes and aspect ratios as large as 10. Large GUVs are strained to a small extent (R/r < 1.54, where R and r are the major and minor radii, respectively), consistent with an LC elasticity-induced expansion of lipid membrane surface area of up to 3% and conservation of the internal GUV volume. Small GUVs, in contrast, form highly elongated spindles (1.54 < R/r < 10) that arise from an efflux of LCs from the GUVs during the shape transformation, consistent with LC-induced straining of the membrane leading to transient membrane pore formation. A thermodynamic analysis of both populations of GUVs reveals that the final shapes adopted by these soft colloids are dominated by a competition between the LC elasticity and an energy (∼0.01 mN/m) associated with the GUV-LC interface. Overall, these results provide insight into the coupling of strain in soft materials and suggest previously unidentified designs of LC-based responsive and reconfigurable materials.

4.
Phys Rev Lett ; 107(23): 237804, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22182127

ABSTRACT

A macroscopic helical twist is imposed on an achiral nematic liquid crystal by controlling the azimuthal alignment directions at the two substrates. On application of an electric field the director rotates in the substrate plane. This electroclinic effect, which requires the presence of chirality, is strongest at the two substrates and increases with increasing imposed twist distortion. We present a simple model involving a trade-off among bulk elastic energy, surface anchoring energy, and deracemization entropy that suggests the large equilibrium director rotation induces a deracemization of chiral conformations in the molecules-effectively "top-down" chiral induction-quantitatively consistent with experiment.

SELECTION OF CITATIONS
SEARCH DETAIL
...