Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 24(6): 778-786, 2018 06.
Article in English | MEDLINE | ID: mdl-29563249

ABSTRACT

Transcriptome analysis of human cells has revealed that intron retention controls the expression of a large number of genes with diverse cellular functions. Detained introns (DI) constitute a subgroup of transcripts with retained introns that are not exported to the cytoplasm but instead remain in the nucleus. Previous studies reported that the splicing of DIs in the CLK1 transcript is post-transcriptionally induced to produce mature mRNA in the absence of new transcription. Thus, CLK1-DI serves as a precursor or "reservoir" for the CLK1 mRNA. However, whether this is a universal mechanism for gene regulation by intron detention remains unknown. The MAT2A gene encodes S-adenosylmethionine (SAM) synthetase and it contains a DI that is regulated in response to intracellular SAM levels. We used three independent assays to assess the precursor-product relationship between MAT2A-DI and MAT2A mRNA. In contrast to CLK1-DI, these data support a model in which the MAT2A-DI transcript is not a precursor to mRNA but is instead a "dead-end" RNA fated for nuclear decay. Additionally, we show that in SAM-deprived conditions the cotranscriptional splicing of MAT2A detained introns increases. We conclude that polyadenylated RNAs with DIs can have at least two distinct fates. They can serve as nuclear reservoirs of pre-mRNAs available for rapid induction by the cell, or they constitute dead-end RNAs that are degraded in the nucleus.


Subject(s)
Introns , Methionine Adenosyltransferase/genetics , RNA Precursors/genetics , RNA Splicing , RNA, Messenger/genetics , Transcription, Genetic , Cell Nucleus/genetics , Cell Nucleus/metabolism , Gene Expression Regulation , Humans , S-Adenosylmethionine/metabolism
2.
Cell Rep ; 20(5): 1088-1099, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28768194

ABSTRACT

Modification of nucleocytoplasmic proteins with O-GlcNAc regulates a wide variety of cellular processes and has been linked to human diseases. The enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) add and remove O-GlcNAc, but the mechanisms regulating their expression remain unclear. Here, we demonstrate that retention of the fourth intron of OGT is regulated in response to O-GlcNAc levels. We further define a conserved intronic splicing silencer (ISS) that is necessary for OGT intron retention. Deletion of the ISS in colon cancer cells leads to increases in OGT, but O-GlcNAc homeostasis is maintained by concomitant increases in OGA protein. However, the ISS-deleted cells are hypersensitive to OGA inhibition in culture and in soft agar. Moreover, growth of xenograft tumors from ISS-deleted cells is compromised in mice treated with an OGA inhibitor. Thus, ISS-mediated regulation of OGT intron retention is a key component in OGT expression and maintaining O-GlcNAc homeostasis.


Subject(s)
Introns , N-Acetylglucosaminyltransferases , Neoplasms, Experimental , RNA Splicing , Animals , Cell Line, Tumor , Humans , Mice , N-Acetylglucosaminyltransferases/biosynthesis , N-Acetylglucosaminyltransferases/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology
3.
Cell ; 169(5): 824-835.e14, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28525753

ABSTRACT

Maintenance of proper levels of the methyl donor S-adenosylmethionine (SAM) is critical for a wide variety of biological processes. We demonstrate that the N6-adenosine methyltransferase METTL16 regulates expression of human MAT2A, which encodes the SAM synthetase expressed in most cells. Upon SAM depletion by methionine starvation, cells induce MAT2A expression by enhanced splicing of a retained intron. Induction requires METTL16 and its methylation substrate, a vertebrate conserved hairpin (hp1) in the MAT2A 3' UTR. Increasing METTL16 occupancy on the MAT2A 3' UTR is sufficient to induce efficient splicing. We propose that, under SAM-limiting conditions, METTL16 occupancy on hp1 increases due to inefficient enzymatic turnover, which promotes MAT2A splicing. We further show that METTL16 is the long-unknown methyltransferase for the U6 spliceosomal small nuclear RNA (snRNA). These observations suggest that the conserved U6 snRNA methyltransferase evolved an additional function in vertebrates to regulate SAM homeostasis.


Subject(s)
Introns , Methionine Adenosyltransferase/genetics , Methyltransferases/metabolism , RNA Splicing , S-Adenosylmethionine/metabolism , Animals , Base Sequence , Gene Expression Regulation, Enzymologic , HEK293 Cells , Humans , Inverted Repeat Sequences , Methionine Adenosyltransferase/chemistry , Methylation , Methyltransferases/chemistry , Schizosaccharomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...