Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(34): e2306073, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37620131
2.
Proc Natl Acad Sci U S A ; 120(36): e2302652120, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37639580

ABSTRACT

Gratings which are in apparent motion reveal some startling properties for classical radiation, especially for luminal gratings traveling at or around the speed of light. We show here that their quantum properties are even more remarkable, their effective refractive index modeling the Schwarzschild singularity which as we show generates spontaneous Hawking radiation in correlated photon pairs. Subjected to external radiation, luminal gratings provoke stimulated emission of photon pairs which we propose as a possible means of observing Hawking radiation in the laboratory.

3.
Light Sci Appl ; 11(1): 276, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36123359

ABSTRACT

Negative refraction, an unnatural optical phenomenon in which the incident and the refracted waves reside on the same side of the surface normal, has been demonstrated with the invention of negative index media based on artificially engineered photonic structures called metamaterials. It has received wide attention due to its potential applications in imaging, nonlinear optics, and electromagnetic cloaking. However, it is highly challenging to realize negative refraction operating at all angles and with the perfect transmission. In this work, leveraging the recent development in topological photonics, we propose to realize reflectionless negative refraction for all incident angles with a topological metamaterial. The proposed metamaterial possesses two Weyl points of opposite topological charges. By interfacing the metamaterial with a perfect electric conductor (PEC) or a perfect magnetic conductor (PMC), the Fermi arc connecting the two Weyl points can take the form of a half-circle possessing a positive or a negative refractive index. Importantly, due to the topological protection, there is no reflection at the interface between the PEC and PMC covered areas, leading to the observation of all-angle negative refraction without reflection at the boundary. Our work provides a new platform for manipulating the propagation of surface waves, which may find applications in the construction of integrated photonic devices.

4.
Nanoscale Horiz ; 7(10): 1228-1239, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-35968838

ABSTRACT

Experimental studies of have been recently performed to determine the optical effect of adsorption of arrays of gold nanoparticles, NPs (16 nm or 40 nm in diameter) on reflective substrates (Ma et al., ACS Photonics, 2018, 5, 4604-4616; Ma et al., ACS Nano, 2020, 14, 328-336) and on transparent interfaces (Montelongo et al., Nat. Mater., 2017, 16, 1127-1135). As predicted by the theory (Sikdar et al., Phys. Chem. Chem. Phys., 2016, 18, 20486-20498), a reflection quenching effect was observed on the reflective substrates, in the frequency domain centred around the nanoparticle localised plasmon resonance. Those results showed a broad dip in reflectivity, which was deepening and red-shifting with increasing array densities. In contrast, the second system has shown, also in accordance with the theory (Sikdar and Kornyshev, Sci. Rep., 2016, 6, 1-16), a broad reflectivity peak in the same frequency domain, increasing in intensity and shifting to the red with densification of the array. In the present paper, we develop a theory of an optical response of NP arrays adsorbed on the surface of stacked nanosheet hyperbolic substrates. The response varies between quenched and enhanced reflectivity, depending on the volume fractions of the metallic and dielectric components in the hyperbolic metamaterial. We reproduce the results of the earlier works in the two opposite limiting cases - of a pure metal and a pure dielectric substrates, while predicting novel resonances for intermediate compositions. Whereas the metal/dielectric ratio in the hyperbolic substrate cannot be changed in time - for each experiment a new substrate should be fabricated - the density of the adsorbed nanoparticle arrays can be controlled in real time in electrochemical photonic cells (Montelongo et al., Nat. Mater., 2017, 16, 1127-1135; Ma et al., ACS Photonics, 2018, 5, 4604-4616; Ma et al., ACS Nano, 2020, 14, 328-336). Therefore, we systematically study the effect of the array density on the optical response of such systems, which could be later verified experimentally. We also investigate the manifestation of these findings in a hyperbolic-Fabry-Perot cell.

5.
J Opt Soc Am A Opt Image Sci Vis ; 38(5): 727-736, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33983278

ABSTRACT

Holography is a long-established technique to encode an object's spatial information into a lower-dimensional representation. We investigate the role of the illumination's spatial coherence properties in the success of such an imaging system through point spread function and Fourier domain analysis. Incoherent illumination is shown to result in more robust imaging performance free of diffraction artifacts at the cost of incurring background noise and sacrificing phase retrieval. Numerical studies confirm that this background noise reduces image sensitivity as the image size increases, in agreement with other similar systems. Following this analysis, we demonstrate a 2D holographic imaging system realized with lensless, 1D measurements of microwave fields generated by dynamic metasurface apertures.

6.
Light Sci Appl ; 9: 122, 2020.
Article in English | MEDLINE | ID: mdl-32699610

ABSTRACT

Based on a developed theory, we show that introducing a meta-grid of sub-wavelength-sized plasmonic nanoparticles (NPs) into existing semiconductor light-emitting-devices (LEDs) can lead to enhanced transmission of light across the LED-chip/encapsulant interface. This results from destructive interference between light reflected from the chip/encapsulant interface and light reflected by the NP meta-grid, which conspicuously increase the efficiency of light extraction from LEDs. The "meta-grid", should be inserted on top of a conventional LED chip within its usual encapsulating packaging. As described by the theory, the nanoparticle composition, size, interparticle spacing, and distance from the LED-chip surface can be tailored to facilitate maximal transmission of light emitted from the chip into its encapsulating layer by reducing the Fresnel loss. The analysis shows that transmission across a typical LED-chip/encapsulant interface at the peak emission wavelength can be boosted up to ~99%, which is otherwise mere ~84% at normal incidence. The scheme could provide improved transmission within the photon escape cone over the entire emission spectrum of an LED. This would benefit energy saving, in addition to increasing the lifetime of LEDs by reducing heating. Potentially, the scheme will be easy to implement and adopt into existing semiconductor-device technologies, and it can be used separately or in conjunction with other methods for mitigating the critical angle loss in LEDs.

7.
Nat Commun ; 9(1): 2086, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802280

ABSTRACT

Propagation behaviors of electromagnetic waves are governed by the equifrequency surface of the medium. Up to now, ordinary materials, including the medium exist in nature and the man-made metamaterials, always have an equifrequency surface (ellipsoid or hyperboloid) centered at zero k-point. Here we propose a new type of metamaterial possessing multiple index ellipsoids centered at arbitrary nonzero k-points. Their locations in momentum space are determined by the connectivity of a set of interpenetrating metallic scaffolds, whereas the group velocities of the modes are determined by the geometrical details. Such system is a new class of metamaterial whose properties arise from global connectivity and hence can have broadband functionality in applications such as negative refraction, orientation-dependent coupling effect, and cavity without walls, and they are fundamentally different from ordinary resonant metamaterials that are inherently bandwidth limited. We perform microwave experiments to confirm our findings.

8.
ACS Nano ; 12(2): 1006-1013, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29323475

ABSTRACT

By exploiting singular spatial modulations of the graphene conductivity, we design a broadband, tunable THz absorber whose efficiency approaches the theoretical upper bound for a wide absorption band with a fractional bandwidth of 185%. Strong field enhancement is exhibited by the modes of this extended structure, which is able to excite a wealth of high-order surface plasmons, enabling deeply subwavelength focusing of incident THz radiation. Previous studies have shown that the conductivity can be modulated at GHz frequencies, which might lead to the development of efficient high-speed broadband switching by an atomically thin layer.

9.
ACS Nano ; 10(5): 5499-506, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27092391

ABSTRACT

We demonstrate a tunable plasmonic metasurface by considering a graphene sheet subject to a periodically patterned doping level. The unique optical properties of graphene result in electrically tunable plasmons that allow for extreme confinement of electromagnetic energy in the technologically significant regime of THz frequencies. Here, we add an extra degree of freedom by using graphene as a metasurface, proposing to dope it with an electrical gate patterned in the micron or submicron scale. By extracting the effective conductivity of the sheet, we characterize metasurfaces periodically modulated along one or two directions. In the first case, and making use of the analytical insight provided by transformation optics, we show an efficient control of THz radiation for one polarization. In the second case, we demonstrate a metasurface with an isotropic response that is independent of wave polarization and orientation.

10.
Nano Lett ; 16(3): 1609-13, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26841342

ABSTRACT

Recently, so-called "superlenses", made from metamaterials that are structured on a length scale much less than an optical wavelength, have shown impressive diffraction-beating image resolution, but they use materials with negative dielectric responses, and they absorb much of the light in a way that seriously degrades both the resolution and brightness of the image. Here we demonstrate an alternative "quantum metamaterials" (QM) approach that uses materials structured at the nanoscale, i.e., comparable to an electron wavelength. This allows us to use quantum mechanical design principles to generate structures with a highly elliptical isofrequency dispersion characteristic that circumvents this loss problem. The physics of the loss improvement is analyzed analytically and the QM superlens subdiffraction imaging is modeled numerically, with a finite-element method. Finally, we demonstrate a working QM superlens device, utilizing intersubband transitions between the confined electron states in a III-V semiconductor multiquantum-well. It images down to a resolution of better than ∼ λ/10 and has loss figures improved by roughly a decade over previous "classical" designs. This QM approach is an alternative paradigm for designing radiation-manipulating devices and offers the prospect of practical super-resolving devices at new wavelengths and geometries.

11.
Proc Natl Acad Sci U S A ; 111(52): 18422-7, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25468982

ABSTRACT

Calculated using classical electromagnetism, the van der Waals force increases without limit as two surfaces approach. In reality, the force saturates because the electrons cannot respond to fields of very short wavelength: polarization charges are always smeared out to some degree and in consequence the response is nonlocal. Nonlocality also plays an important role in the optical spectrum and distribution of the modes but introduces complexity into calculations, hindering an analytical solution for interactions at the nanometer scale. Here, taking as an example the case of two touching nanospheres, we show for the first time, to our knowledge, that nonlocality in 3D plasmonic systems can be accurately analyzed using the transformation optics approach. The effects of nonlocality are found to dramatically weaken the field enhancement between the spheres and hence the van der Waals interaction and to modify the spectral shifts of plasmon modes.

12.
ACS Nano ; 7(7): 6287-96, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23782059

ABSTRACT

We investigate the emergence of nonlocal effects in plasmonic nanostructures through electron-energy loss spectroscopy. To theoretically describe the spatial dispersion in the metal permittivity, we develop a full three-dimensional nonlocal hydrodynamic solution of Maxwell's equations in frequency domain that implements the electron beam as a line current source. We use our numerical approach to perform an exhaustive analysis of the impact of nonlocality in the plasmonic response of single triangular prisms and connected bowtie dimers. Our results demonstrate the complexity of the interplay between nonlocal and geometric effects taking place in these structures. We show the different sensitivities to both effects of the various plasmonic modes supported by these systems. Finally, we present an experimental electron-energy loss study on gold nanoprisms connected by bridges as narrow as 1.6 nm. The comparison with our theoretical predictions enables us to reveal in a phenomenological fashion the enhancement of absorption damping that occurs in these atomistic junctions due to quantum confinement and grain boundary electron scattering.


Subject(s)
Energy Transfer , Models, Theoretical , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Refractometry/methods , Surface Plasmon Resonance/methods , Computer Simulation , Electron Transport , Light , Nanoparticles/radiation effects , Scattering, Radiation
13.
Chemphyschem ; 14(6): 1109-16, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23512885

ABSTRACT

In this concept, we present the basic assumptions and techniques underlying the hydrodynamic model of electron response in metals and demonstrate that the model can be easily incorporated into computational models. We discuss the role of the additional boundary conditions that arise due to nonlocal terms in the modified equation of motion and the ultimate impact on nanoplasmonic systems. The hydrodynamic model captures much of the microscopic dynamics relating to the fundamental quantum mechanical nature of the electrons and reveals intrinsic limitations to the confinement and enhancement of light around nanoscale features. The presence of such limits is investigated numerically for different configurations of plasmonic nanostructures.

14.
ACS Nano ; 6(7): 6492-506, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22713362

ABSTRACT

The sharpness of corners/edges can have a large effect on the optical responses of metallic nanostructures. Here we deploy the theory of transformation optics to analytically investigate a variety of blunt plasmonic structures, including overlapping nanowire dimers and crescent-shaped nanocylinders. These systems are shown to support several discrete optical modes, whose energy and line width can be controlled by tuning the nanoparticle geometry. In particular, the necessary conditions are highlighted respectively for the broadband light absorption effect and the invisibility dips that appear in the radiative spectrum. More detailed discussions are provided especially with respect to the structures with asymmetric edge rounding. These structures can support additional subradiant modes, whose interference with the neighboring dipolar modes results in a rapid change of the scattering cross-section, similar to the phenomenon observed in plasmonic Fano resonances. Finite element numerical calculations are also performed to validate the analytical predictions. The physical insights into blunt nanostructures presented in this work may be of great interest for the design of broadband light-harvesting devices, invisible and noninvasive biosensors, and slowing-light devices.


Subject(s)
Nanostructures , Surface Plasmon Resonance , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Models, Theoretical , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology , Nanowires/chemistry , Nanowires/ultrastructure , Optical Phenomena , Static Electricity
15.
Nano Lett ; 12(6): 3308-14, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22616689

ABSTRACT

The nanofocusing performance of plasmonic tips is studied analytically and numerically. The effects of electron-electron interactions in the dielectric response of the metal are taken into account through the implementation of a nonlocal, spatially dispersive, hydrodynamic permittivity. We demonstrate that spatial dispersion only slightly modifies the device parameters which maximize its field enhancement capabilities. The interplay between nonlocality, tip bluntness, and surface roughness is explored. We show that, although spatial dispersion reduces the field enhancement taking place at the structure apex, it also diminishes the impact that geometric imperfections have on its performance.


Subject(s)
Models, Chemical , Nanostructures/chemistry , Nanostructures/ultrastructure , Surface Plasmon Resonance/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
16.
ACS Nano ; 6(6): 5291-6, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22530602

ABSTRACT

We show that metal nanoparticles can be used to improve the performance of super-resolution fluorescence nanoscopes based on stimulated-emission-depletion (STED). Compared with a standard STED nanoscope, we show theoretically a resolution improvement by more than an order of magnitude, or equivalently, depletion intensity reductions by more than 2 orders of magnitude and an even stronger photostabilization. Our scheme may allow improvement of existing STED nanoscopes and assist in the development of low-power, low-cost nanoscopes. This has the potential to increase the availability of STED nanoscopes and lead to a significant expansion of our understanding of biological and biochemical phenomena occurring on the nanoscale.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Models, Theoretical , Molecular Imaging/methods , Nanoparticles/ultrastructure , Nanotechnology/methods , Computer Simulation , Contrast Media
17.
ACS Nano ; 6(2): 1380-6, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22256972

ABSTRACT

Polarization-controlled excitation of plasmonic modes in nanometric Au particle-on-film gaps is investigated experimentally using single-particle dark-field spectroscopy. Two distinct geometries are explored: nanospheres on top of and inserted in a thin gold film. Numerical simulations reveal that the three resonances arising in the scattering spectra measured for particles on top of a film originate from highly confined gap modes at the interface. These modes feature different azimuthal characteristics, which are consistent with recent theoretical transformation optics studies. On the other hand, the scattering maxima of embedded particles are linked to dipolar modes having different orientations and damping rates. Finally, the radiation properties of the particle-film gap modes are studied through the mapping of the scattered power within different solid angle ranges.

18.
Opt Express ; 19(15): 14502-7, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21934813

ABSTRACT

Recently, Chumak et al. have demonstrated experimentally the time-reversal of microwave spin pulses based on non-adiabatically tuning the wave speed in a spatially-periodic manner [Nat. Comm. 1, 141 (2010)]. Here, we solve the associated wave equations analytically, and give an explicit formula for the reversal efficiency. We discuss the implementation for short optical electromagnetic pulses and show that the new scheme may lead to their accurate time-reversal with efficiency higher than before.

19.
Phys Rev Lett ; 106(19): 193902, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21668158

ABSTRACT

We show that short pulses propagating in zero-gap periodic systems can be reversed with 100% efficiency by using weak nonadiabatic tuning of the wave velocity at time scales that can be much slower than the period. Unlike previous schemes, we demonstrate reversal of broadband (few cycle) pulses with simple structures. Our scheme may thus open the way to time reversal in a variety of systems for which it was not accessible before.

20.
ACS Nano ; 5(4): 3293-308, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21361306

ABSTRACT

The interaction between metallic nanowires and a metal substrate is investigated by means of transformation optics. This plasmonic system is of particular interest for single molecule detection or nanolasers. By mapping such a plasmonic device onto a metal-insulator-metal infinite structure, its optical response can be fully derived analytically. In this article, the absorption cross-section of a nanowire placed close to a metallic surface is derived within and beyond the quasi-static limit. The system is shown to support several modes characterized by a different angular momentum and whose resonance red-shifts when the nanoparticle approaches the metal substrate. These resonances give rise to a drastic field enhancement (>10(2)) within the narrow gap separating the nanoparticle from the metal surface. The case of a nanowire dimer is also investigated and is closely related to the previous configuration. More physical insights are provided especially with respect to the invisibility dips appearing in the radiative spectrum. Numerical simulations have also been performed to confirm our analytical predictions and determine their range of validity.

SELECTION OF CITATIONS
SEARCH DETAIL
...