Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (196)2023 06 02.
Article in English | MEDLINE | ID: mdl-37335110

ABSTRACT

In vivo electrophysiology provides unparalleled insight into the sub-second-level circuit dynamics of the intact brain and represents a method of particular importance for studying mouse models of human neuropsychiatric disorders. However, such methods often require large cranial implants, which cannot be used in mice at early developmental time points. As such, virtually no studies of in vivo physiology have been performed in freely behaving infant or juvenile mice, despite the fact that a better understanding of neurological development in this critical window would likely provide unique insights into age-dependent developmental disorders such as autism or schizophrenia. Here, a micro-drive design, surgical implantation procedure, and post-surgery recovery strategy are described that allow for chronic field and single-unit recordings from multiple brain regions simultaneously in mice as they age from postnatal day 20 (p20) to postnatal day 60 (p60) and beyond, a time window roughly corresponding to the human ages of 2 years old through to adulthood. The number of recording electrodes and final recording sites can be easily modified and expanded, thus allowing flexible experimental control of the in vivo monitoring of behavior- or disease-relevant brain regions across development.


Subject(s)
Autistic Disorder , Brain , Mice , Humans , Animals , Infant, Newborn , Electrophysiology/methods , Electrodes, Implanted , Brain/surgery , Brain/physiology , Behavior, Animal/physiology
2.
Cell Rep ; 42(6): 112662, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37347662

ABSTRACT

Synaptic plasticity is hypothesized to underlie "replay" of salient experience during hippocampal sharp-wave/ripple (SWR)-based ensemble activity and to facilitate systems-level memory consolidation coordinated by SWRs and cortical sleep spindles. It remains unclear how molecular changes at synapses contribute to experience-induced modification of network function. The synaptic protein KIBRA regulates plasticity and memory. To determine the impact of KIBRA-regulated plasticity on circuit dynamics, we recorded in vivo neural activity from wild-type (WT) mice and littermates lacking KIBRA and examined circuit function before, during, and after novel experience. In WT mice, experience altered population activity and oscillatory dynamics in a manner consistent with incorporation of new information content in replay and enhanced hippocampal-cortical communication. While baseline SWR features were normal in KIBRA conditional knockout (cKO) mice, experience-dependent alterations in SWRs were absent. Furthermore, intra-hippocampal and hippocampal-cortical communication during SWRs was disrupted following KIBRA deletion. These results indicate molecular mechanisms that underlie network-level adaptations to experience.


Subject(s)
Hippocampus , Memory Consolidation , Animals , Mice , Hippocampus/physiology , Memory Consolidation/physiology , Sleep/physiology
3.
bioRxiv ; 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36711560

ABSTRACT

SHORT ABSTRACT: We describe a novel micro-drive design, surgical implantation procedure, and post-surgery recovery strategy that allows for chronic field and single-unit recordings from up to sixteen brain regions simultaneously in juvenile and adolescent mice across a critical developmental window from p20 to p60 and beyond. LONG ABSTRACT: In vivo electrophysiology provides unparalleled insight into sub-second-level circuit dynamics of the intact brain and represents a method of particular importance for studying mouse models of human neuro-psychiatric disorders. However, such methods often require large cranial implants which cannot be used in mice at early developmental timepoints. As such, virtually no studies of in vivo physiology have been performed in freely behaving infant or juvenile mice, despite the fact that a better understanding of neurological development in this critical window is likely to provide unique insights into age-dependent developmental disorders such as autism or schizophrenia. Here, we describe a novel micro-drive design, surgical implantation procedure, and post-surgery recovery strategy that allows for chronic field and single-unit recordings from up to sixteen brain regions simultaneously in mice as they age from postnatal day 20 (p20) to postnatal day 60 (p60) and beyond, a time window roughly corresponding to human ages 2-years-old through adult. The number of recording electrodes and final recording sites can be easily modified and expanded, allowing flexible experimental control of in vivo monitoring of behavior- or disease-relevant brain regions across development.

4.
Nat Neurosci ; 23(9): 1102-1110, 2020 09.
Article in English | MEDLINE | ID: mdl-32661395

ABSTRACT

Cerebellar dysfunction has been demonstrated in autism spectrum disorders (ASDs); however, the circuits underlying cerebellar contributions to ASD-relevant behaviors remain unknown. In this study, we demonstrated functional connectivity between the cerebellum and the medial prefrontal cortex (mPFC) in mice; showed that the mPFC mediates cerebellum-regulated social and repetitive/inflexible behaviors; and showed disruptions in connectivity between these regions in multiple mouse models of ASD-linked genes and in individuals with ASD. We delineated a circuit from cerebellar cortical areas Right crus 1 (Rcrus1) and posterior vermis through the cerebellar nuclei and ventromedial thalamus and culminating in the mPFC. Modulation of this circuit induced social deficits and repetitive behaviors, whereas activation of Purkinje cells (PCs) in Rcrus1 and posterior vermis improved social preference impairments and repetitive/inflexible behaviors, respectively, in male PC-Tsc1 mutant mice. These data raise the possibility that these circuits might provide neuromodulatory targets for the treatment of ASD.


Subject(s)
Autism Spectrum Disorder/physiopathology , Cerebellum/physiopathology , Neural Pathways/physiopathology , Prefrontal Cortex/physiopathology , Animals , Male , Mice , Mice, Mutant Strains
5.
Anal Bioanal Chem ; 408(14): 3811-21, 2016 05.
Article in English | MEDLINE | ID: mdl-26993308

ABSTRACT

In this report, we have designed a rapid and sensitive, intensity-based ratiometric sensing as well as lifetime-based sensing probe for the detection of hyaluronidase activity. Hyaluronidase expression is known to be upregulated in various pathological conditions. We have developed a fluorescent probe by heavy labeling of hyaluronic acid with a new orange/red-emitting organic azadioxatriangulenium (ADOTA) fluorophore, which exhibits a long fluorescence lifetime (∼20 ns). The ADOTA fluorophore in water has a peak fluorescence lifetime of ∼20 ns and emission spectra centered at 560 nm. The heavily ADOTA-labeled hyaluronic acid (HA-ADOTA) shows a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal, and a shorter fluorescence lifetime (∼4 ns) due to efficient self-quenching and formation of aggregates. In the presence of hyaluronidase, the brightness and fluorescence lifetime of the sample increase with a blue shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA-ADOTA probe at 560 and 605 nm can be used as the sensing method for the detection of hyaluronidase. The cleavage of the hyaluronic acid macromolecule reduces the energy migration between ADOTA molecules, as well as the degree of self-quenching and aggregation. This probe can be efficiently used for both intensity-based ratiometric sensing as well as fluorescence lifetime-based sensing of hyaluronidase. The proposed method makes it a rapid and sensitive assay, useful for analyzing levels of hyaluronidase in relevant clinical samples like urine or plasma. Graphical Abstract Scheme showing cleavage of HA-ADOTA probe by hyaluronidase and the change in the emission spectrum of HA-ADOTA probe before and after cleavage by hyaluronidase.


Subject(s)
Biosensing Techniques , Fluorescent Dyes/chemistry , Culture Media
SELECTION OF CITATIONS
SEARCH DETAIL
...