Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Assoc Lab Anim Sci ; 60(5): 510-518, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34416927

ABSTRACT

Pathogen transmission into zebrafish colonies is controlled through vigilant biosecurity practices. One such practice is embryo surface disinfection, which often uses sodium hypochlorite. However, if sodium hypochlorite is used at an inappropriate pH, concentration, or exposure time, zebrafish embryos can experience significant mortality and morbidity. Reagent-grade sodium hypochlorite is often used for embryo surface disinfection because commercial-grade sodium hypochlorite has additional ingredients that may have deleterious effects on the embryo. In addition, chlorine dioxide and the combination of sodium chloride and potassium peroxymonosulfate (SCPP) are effective equipment disinfectants; however, the effects of these chemical agents on zebrafish embryos during surface disinfection are unknown. In this study, we exposed strain 5D zebrafish embryos (ages, 6 and 24 h postfertilization) to 4 chlorine-containing agents (reagent-grade sodium hypochlorite [bleach], commercial-grade sodium hypochlorite [bleach], SCPP, and chlorine dioxide) at either 50- or 100- ppm for 5 or 10 min. All groups were evaluated at 5 d postfertilization for survival, hatching rate, and morphologic defect rate. The experimental group with the highest survival and hatching rates and the lowest morphologic defect rate was the 24-h postfertilization embryos exposed to 50 ppm SCPP for 5 min. The survival, hatching rate, and defect rate did not differ significantly among age-matched controls; however, the hatching rate after exposure to 50 ppm SCPP was significantly higher than that of embryos exposed to 50 ppm reagent-grade sodium hypochlorite for 5 min (100% compared with 23% respectively). SCPP solution may provide an alternative surface disinfectant for zebrafish embryos because it maximizes survival and hatching rates and minimizes morphologic defect rates. However, in vivo efficacy against common zebrafish pathogens requires further testing. Use of chlorine dioxide at 50 ppm or greater is not recommended for zebrafish embryo surface disinfection due to significant mortality among 6 and 24 h postfertilization embryos.


Subject(s)
Disinfectants , Disinfection , Animals , Chlorine , Sodium Hypochlorite/pharmacology , Zebrafish
2.
Zebrafish ; 17(5): 342-353, 2020 10.
Article in English | MEDLINE | ID: mdl-33048660

ABSTRACT

Embryo surface disinfection is utilized in aquaculture to decrease the risk of pathogen introduction into established colonies. Zebrafish embryos are commonly disinfected with unbuffered sodium hypochlorite at 25-50 ppm for 10 min with or without concurrent treatment with chemicals, including pronase (Pron), sodium thiosulfate, and/or methylene blue; however, the impact of these chemicals on embryo survival and development has not been evaluated. In this study, AB and casper embryos were exposed to disinfection protocols that used Pron, sodium thiosulfate, and/or methylene blue (given alone, in various combinations, or all three combined) with 50 and 100 ppm sodium hypochlorite performed 6 and 24 h postfertilization (HPF). All groups were evaluated for survival, hatching, and malformations at 5 days postfertilization. Maximal survival (69%-97%) and hatching rates (66%-94%) were generally observed with sodium hypochlorite disinfection followed by exposure to both Pron and sodium thiosulfate and maintenance in standard embryo medium without methylene blue. Methylene blue had variable effects on survival and hatching. Higher survival and hatching rates were seen in AB embryos disinfected at 6 HPF and casper embryos disinfected at 24 HPF. Susceptibility to sodium hypochlorite toxicity differed by strain, emphasizing the need to test disinfection protocols on small embryo cohorts.


Subject(s)
Disinfectants/adverse effects , Embryonic Development/drug effects , Methylene Blue/adverse effects , Pronase/adverse effects , Sodium Hypochlorite/adverse effects , Thiosulfates/adverse effects , Zebrafish/physiology , Animals , Disinfection , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/embryology , Zebrafish/embryology , Zebrafish/growth & development
3.
Zebrafish ; 15(1): 63-72, 2018 02.
Article in English | MEDLINE | ID: mdl-29048998

ABSTRACT

Pseudoloma neurophilia, a microsporidium that primarily infects neural tissues, is a common pathogen in laboratory zebrafish. The risk of parasite transmission with different spawning apparatuses and the effectiveness of disinfection are unknown. In this study, we spawned uninfected zebrafish with P. neurophilia-infected zebrafish in either 50 L mass spawning chambers (MSCs) or 1 L standard breeding tanks (BTs). Fish were spawned once or thrice, with and without chamber disinfection between uses, to evaluate risk of vertical and horizontal transmission. Six disinfection protocols were tested to determine which effectively eliminated residual spores. We demonstrated that three consecutive uses of an MSC significantly increased the risk of transmission to other fish when compared to the use of BTs or only one spawning event in an MSC (both p < 0.0001). Vertical transmission was not detected with any method. Disinfection with ∼100 ppm bleach soak (pH ∼7.0), 75 ppm Wescodyne® soak, and 175 ppm Wescodyne Plus spray was 100% effective in eliminating spores from the MSCs. Disinfection of MSCs before spawning did not decrease P. neurophilia transmission when infected fish remained present in the breeding population. Researchers should avoid using endemically infected fish in MSCs to minimize transmission of pathogens within their colonies.


Subject(s)
Animals, Laboratory/microbiology , Disinfection/standards , Fish Diseases/microbiology , Microsporidia/physiology , Microsporidiosis/veterinary , Zebrafish/microbiology , Animal Husbandry/instrumentation , Animal Husbandry/standards , Animals , Fish Diseases/prevention & control , Fish Diseases/transmission , Microsporidiosis/prevention & control , Microsporidiosis/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...