Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38653724

ABSTRACT

Colicin (Col) plasmid contains colicin encoding genes arranged in an operon controlled by an SOS inducible promoter. Therefore, any external stresses to the host cell can induce the expression of the downstream genes in the Col operon, including a lysis gene. The lysis protein is involved in the extracellular release of colicin through lysis of the producer cells, which causes a decline in culture turbidity. However, it is not yet known that E. coli cells with the native pColE9-J plasmid hold the same level of cell death at the population level following a set of induced conditions. In this study, using a mitomycin C sensitivity assay along with a live dead staining method of detection, we showed that the native pColE9-J plasmid, which unusually carries an extended Col operon (ColE9) containing two lysis genes, did not confer a rapid decline in the culture turbidity following induction with mitomycin C. Interestingly a subset of the cells suffered perturbation of their outer membrane, which was not observed from single lysis mutant (∆celE or ∆celI) cells. This observed heterogeneity in the colicin E9 release leading to differential outer membrane perforation may bring a competitive advantage to these cells in a mixed population.


Subject(s)
Colicins , Escherichia coli , Mitomycin , Plasmids , Colicins/metabolism , Colicins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Mitomycin/pharmacology , Plasmids/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Operon , Anti-Bacterial Agents/pharmacology
2.
Arch Microbiol ; 204(10): 628, 2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36114880

ABSTRACT

Spontaneous production of E colicins is known to occur in only a small fraction of colicinogenic population. The current study aimed to determine if the same holds true for the production of colicin E9 in real time, by investigating the induction dynamics of the promoter of the ColE9 operon which results in the expression of the ColE9 activity and functional genes. A novel fluorescent reporter was constructed which carries the fusion of the ColE9 promoter and the gfpmut2 gene in a low copy number plasmid that was compatible with the native ColE9-J plasmid. Using the fluorescent reporter construct in the non colicinogenic E. coli cells, the induction of the ColE9 promoter was investigated. The current study demonstrates that the spontaneous induction of the ColE9 promoter occurs in a heterogenous manner and this heterogeneity is maintained in a bacterial population for several generations suggesting that it is unlikely due to any irreversible mutation in the bacterial culture. Furthermore, the same investigations were repeated using the colicin E9 producing E. coli cells. Flow cytometry analysis revealed that 7.1 ± 0.68% of the colicin E9 producing E. coli cells expressed GFP albeit only 2.45 ± 0.30% was observed from non colicinogenic E. coli cells. The considerable increase in the number of the fluorescent cells was likely due to the DNase activity of colicin E9 produced by their clonemates, resulting the auto-induction, which can be abolished with the inactivation of the DNase activity of the colicin E9.


Subject(s)
Colicins , Escherichia coli Infections , Escherichia coli Proteins , Colicins/genetics , Colicins/metabolism , Deoxyribonucleases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Operon
3.
JAC Antimicrob Resist ; 2(4): dlaa096, 2020 Dec.
Article in English | MEDLINE | ID: mdl-34223048

ABSTRACT

BACKGROUND: In the UK there is limited coverage of antimicrobial stewardship across postgraduate curricula and evidence that final year medical students have insufficient and inconsistent antimicrobial stewardship teaching. A national undergraduate curriculum for antimicrobial resistance and stewardship is required to standardize an adequate level of understanding for all future doctors. OBJECTIVES: To provide a UK national consensus on competencies for antimicrobial resistance and stewardship for undergraduate medical education. METHODS: Using the modified Delphi method over two online survey rounds, an expert panel comprising leads for infection teaching from 25 UK medical schools reviewed competency descriptors for antimicrobial resistance and stewardship education. RESULTS: There was a response rate of 100% with all 28 experts who agreed to take part completing both survey rounds. Following the first-round survey, of the initial 55 descriptors, 43 reached consensus (78%). The second-round survey included the 12 descriptors from the first round in which agreement had not been reached, four amended descriptors and 12 new descriptors following qualitative feedback from the panel members. Following the second-round survey, a total of 58 consensus-based competency descriptors within six overarching domains were identified. CONCLUSIONS: The consensus-based competency descriptors defined here can be used to inform standards, design curricula, develop assessment tools and direct UK undergraduate medical education.

4.
mBio ; 10(1)2019 01 29.
Article in English | MEDLINE | ID: mdl-30696740

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen and the leading cause of morbidity and mortality in cystic fibrosis (CF) patients. P. aeruginosa infections are difficult to treat due to a number of antibiotic resistance mechanisms and the organism's propensity to form multicellular biofilms. Epidemic strains of P. aeruginosa often dominate within the lungs of individual CF patients, but how they achieve this is poorly understood. One way that strains of P. aeruginosa can compete is by producing chromosomally encoded bacteriocins, called pyocins. Three major classes of pyocin have been identified in P. aeruginosa: soluble pyocins (S types) and tailocins (R and F types). In this study, we investigated the distribution of S- and R-type pyocins in 24 clinical strains isolated from individual CF patients and then focused on understanding their roles in interstrain competition. We found that (i) each strain produced only one R-pyocin type, but the number of S-pyocins varied between strains, (ii) R-pyocins were generally important for strain dominance during competition assays in planktonic cultures and biofilm communities in strains with both disparate R- and S-pyocin subtypes, and (iii) purified R-pyocins demonstrated significant antimicrobial activity against established biofilms. Our work provides support for a role played by R-pyocins in the competition between P. aeruginosa strains and helps explain why certain strains and lineages of P. aeruginosa dominate and displace others during CF infection. Furthermore, we demonstrate the potential of exploiting R-pyocins for therapeutic gains in an era when antibiotic resistance is a global concern.IMPORTANCE A major clinical problem caused by Pseudomonas aeruginosa, is chronic biofilm infection of the lungs in individuals with cystic fibrosis (CF). Epidemic P. aeruginosa strains dominate and displace others during CF infection, but these intraspecies interactions remain poorly understood. Here we demonstrate that R-pyocins (bacteriocins) are important factors in driving competitive interactions in biofilms between P. aeruginosa strains isolated from different CF patients. In addition, we found that these phage-like pyocins are inhibitory against mature biofilms of susceptible strains. This highlights the potential of R-pyocins as antimicrobial and antibiofilm agents at a time when new antimicrobial therapies are desperately needed.


Subject(s)
Antibiosis , Biofilms/growth & development , Cystic Fibrosis/complications , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/physiology , Pyocins/metabolism , Humans
5.
Biochim Biophys Acta ; 1843(8): 1717-31, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24746518

ABSTRACT

Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Subject(s)
Bacteriocins/metabolism , Cell Membrane/metabolism , Colicins/metabolism , Protein Transport/genetics , Bacteriocins/chemistry , Cell Membrane/chemistry , Colicins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Periplasm/chemistry , Periplasm/metabolism , Periplasmic Proteins , Protein Structure, Tertiary , Structure-Activity Relationship
6.
World J Microbiol Biotechnol ; 30(7): 2091-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24652519

ABSTRACT

The majority of colicin operons are regulated by an SOS response inducible promoter (SOS promoter), located at upstream of the colicin operons. Therefore, colicin synthesis is induced by DNA damaging agents like mitomycin C (MMC) because the resulting DNA damage switches on the SOS response in bacteria. In this study, we have described the strategy for fusion of the SOS promoter of the colicin E9 operon (ColE9p) with a promoterless green fluorescent reporter gene (gfpmut2). We observed that the ColE9p-gfpmut2 is inducible by MMC which confirmed that the ColE9p-gfpmut2 is sensitive to SOS response inducing agents. The data implies that the ColE9p-gfpmut2 based reporter system is suitable for monitoring the ColE9 synthesis induced by SOS response inducing agents including antibiotics. Using green fluorescent protein expression from the ColE9p-gfpmut2 as an indicator of ColE9 synthesis; we have investigated, first time, the inducing effects of cephalexin antibiotic on ColE9 synthesis. Our data demonstrated that the cephalexin has potential to induce ColE9 synthesis from E. coli JM83 host cells albeit the level of this induction is very low hence its detection required a highly sensitive method.


Subject(s)
Colicins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Cephalexin/pharmacology , Colicins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Operon/genetics , SOS Response, Genetics/genetics , SOS Response, Genetics/physiology
7.
Microbiologyopen ; 2(5): 853-61, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24039240

ABSTRACT

Nuclease colicins bind their target receptor BtuB in the outer membrane of sensitive Escherichia coli cells in the form of a high-affinity complex with their cognate immunity proteins. The release of the immunity protein from the colicin complex is a prerequisite for cell entry of the colicin and occurs via a process that is still relatively poorly understood. We have previously shown that an energy input in the form of the cytoplasmic membrane proton motive force is required to promote immunity protein (Im9) release from the colicin E9/Im9 complex and colicin cell entry. We report here that engineering rigidity in the structured part of the colicin translocation domain via the introduction of disulfide bonds prevents immunity protein release from the colicin complex. Reduction of the disulfide bond by the addition of DTT leads to immunity protein release and resumption of activity. Similarly, the introduction of a disulfide bond in the DNase domain previously shown to abolish channel formation in planar bilayers also prevented immunity protein release. Importantly, all disulfide bonds, in the translocation as well as the DNase domain, also abolished the biological activity of the Im9-free colicin E9, the reduction of which led to a resumption of activity. Our results show, for the first time, that conformational flexibility in the structured translocation and DNase domains of a nuclease colicin is essential for immunity protein release, providing further evidence for the hypothesis that global structural rearrangement of the colicin molecule is required for disassembly of this high-affinity toxin-immunity protein complex prior to outer membrane translocation.


Subject(s)
Colicins/chemistry , Deoxyribonucleases/chemistry , Escherichia coli/chemistry , Binding Sites , Colicins/genetics , Colicins/immunology , Deoxyribonucleases/genetics , Deoxyribonucleases/immunology , Disulfides/chemistry , Escherichia coli/genetics , Escherichia coli/immunology , Gene Expression , Kinetics , Models, Molecular , Mutation , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology
8.
Microbiol Res ; 168(10): 661-6, 2013 Dec 14.
Article in English | MEDLINE | ID: mdl-23669239

ABSTRACT

The presence of dual SOS boxes in the regulatory region of the most of colicin operons confines synthesis of colicin to times of stress, presumably to reduce the cost of its production. However, in presence of certain inducing agents, such as antibiotics, this tight control of colicin operon is usually lost. Although synthesis of most of colicins is known to be regulated by SOS response of host cell, different patterns of induction from distinct colicins against various inducing agents have been shown in recent years. In this study, we investigated the induction pattern of enzymatic colicin E9 (ColE9) synthesis following treatment with various concentrations (sub MICs) of the Norfloxacin (NOR) using pSBM23 construct which carries transcriptional fusion of SOS inducible promoter of pColE9 (ColE9p) and a fluorescent reporter gene (gfpmut2) into kanamycin resistant pColE9-J plasmid. Flow cytomtry analysis of the Escherichia coli cells containing pSBM23, following treatment with various concentrations showed that the SOS response mediated induction of the synthesis of ColE9 happens in a dose-dependent manner. In summary, our results suggest that the presence, even in a minute amount, of SOS response inducing agents such as fluoroquinolone antibiotic in natural habitat of colicinogenic population can promote such a costly antagonistic behaviour of microbes.


Subject(s)
Anti-Bacterial Agents/metabolism , Colicins/biosynthesis , Escherichia coli/drug effects , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/drug effects , Norfloxacin/metabolism , Artificial Gene Fusion , Escherichia coli/genetics , Flow Cytometry , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , SOS Response, Genetics
9.
Biochem Soc Trans ; 40(6): 1433-7, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23176494

ABSTRACT

A Biochemical Society Focused Meeting on bacteriocins was held at the University of Nottingham on 16-18 July 2012 to mark the retirement of Professor Richard James and honour a scientific career of more than 30 years devoted to an understanding of the biology of colicins, bacteriocins produced by Escherichia coli. This meeting was the third leg of a triumvirate of symposia that included meetings at the Île de Bendor, France, in 1991 and the University of East Anglia, Norwich, U.K., in 1998, focused on bringing together leading experts in basic and applied bacteriocin research. The symposium which attracted 70 attendees consisted of 18 invited speakers and 22 selected oral communications spread over four themes: (i) Role of bacteriocins in bacterial ecology, (ii) Mode of action of bacteriocins, (ii) Mechanisms of bacteriocin import across the cell envelope, and (iv) Biotechnological and biomedical applications of bacteriocins. Speakers and poster presenters travelled from around the world, including the U.S.A., Japan, Asia and Europe, to showcase the latest developments in their scientific research.


Subject(s)
Anti-Bacterial Agents/metabolism , Antibiosis , Bacteriocins/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Congresses as Topic , Food Microbiology
10.
Biochem Soc Trans ; 40(6): 1469-74, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23176500

ABSTRACT

Colicins are protein antibiotics produced by Escherichia coli to kill closely related non-identical competing species. They have taken advantage of the promiscuity of several proteins in the cell envelope for entry into the bacterial cell. The Tol-Pal system comprises one such ensemble of periplasmic and membrane-associated interacting proteins that links the IM (inner membrane) and OM (outer membrane) and provides the cell with a structural scaffold for cell division and energy transduction. Central to the Tol-Pal system is the TolA hub protein which forms protein-protein interactions with all other members and also with extrinsic proteins such as colicins A, E1, E2-E9 and N, and the coat proteins of the Ff family of filamentous bacteriophages. In the present paper, we review the role of TolA in the translocation of colicin A through the recently determined crystal structure of the complex of TolA with a translocation domain peptide of ColA (TA53-107), we demonstrate that TA53-107 binds to TolA at a novel binding site and compare the interactions of TolA with other colicins that use the Tol-Pal system for cell entry substantiating further the role of TolA as a periplasmic hub protein.


Subject(s)
Colicins/metabolism , Escherichia coli Proteins/physiology , Escherichia coli/metabolism , Periplasm/metabolism , Binding Sites , Escherichia coli Proteins/chemistry , Models, Molecular , Peptide Fragments/chemistry , Periplasmic Proteins/chemistry , Periplasmic Proteins/physiology , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Transport
11.
Biochem Soc Trans ; 40(6): 1517-21, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23176509

ABSTRACT

Nuclease colicins, such as colicin E9, are a class of Escherichia coli bacteriocins that kill E. coli and closely related Gram-negative bacteria through nucleolytic action in the cytoplasm. In order to accomplish this, their cytotoxic domains require transportation across two sets of membranes and the periplasmic space. Currently, little information is available concerning how the membrane translocation processes are achieved, and the present review summarizes our recent results on the in vitro membrane activities of the colicin nuclease domains. Using model membranes, we have analysed the cytotoxic domains of a number of DNase-type colicins and one rRNase colicin for their bilayer insertion depth and for their ability to induce vesicle aggregation, lipid mixing and increased bilayer permeability. We found that, by analogy with AMPs (antimicrobial peptides), the interplay between charge and hydrophobic character of the nuclease domains governs their pleiotropic membrane activities and these results form the basis of ongoing work to unravel the molecular mechanisms underlying their membrane translocation.


Subject(s)
Cell Membrane/enzymology , Colicins/chemistry , Deoxyribonucleases/chemistry , Escherichia coli/enzymology , Antimicrobial Cationic Peptides/chemistry , Catalytic Domain , Cell Membrane Permeability , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Unilamellar Liposomes/chemistry
12.
PLoS One ; 7(9): e46656, 2012.
Article in English | MEDLINE | ID: mdl-23029560

ABSTRACT

BACKGROUND: Protein transport across cellular membranes is an important aspect of toxin biology. Escherichia coli cell killing by nuclease colicins occurs through DNA (DNases) or RNA (RNases) hydrolysis and to this end their cytotoxic domains require transportation across two sets of membranes. In order to begin to unravel the molecular mechanisms underlying the membrane translocation of colicin nuclease domains, we have analysed the membrane association of four DNase domains (E9, a charge reduction E9 mutant, E8, and E7) and one ribosomal RNase domain (E3) using a biomembrane model system. PRINCIPAL RESULTS: We demonstrate, through the use of large unilamellar vesicles composed of synthetic and E. coli lipids and a membrane surface potential sensor, that the colicin nuclease domains bind anionic membranes only, with micromolar affinity and via a cooperative binding mechanism. The evaluation of the nuclease bilayer insertion depth, through a fluorescence quenching analysis using brominated lipids, indicates that the nucleases locate to differential regions in the bilayer. Colicin DNases target the interfacial region of the lipid bilayer, with the DNase E7 showing the deepest insertion, whereas the ribosomal RNase E3 penetrates into the hydrophobic core region of the bilayer. Furthermore, the membrane association of the DNase E7 and the ribosomal RNase E3 induces vesicle aggregation, lipid mixing and content leakage to a much larger extent than that of the other DNases analysed. CONCLUSIONS/SIGNIFICANCE: Our results show, for the first time, that after the initial electrostatically driven membrane association, the pleiotropic membrane effects induced by colicin nuclease domains relate to their bilayer insertion depth and may be linked to their in vivo membrane translocation.


Subject(s)
Colicins/chemistry , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Unilamellar Liposomes/chemistry , Escherichia coli/chemistry , Protein Binding , Protein Structure, Tertiary
13.
J Biol Chem ; 287(23): 19048-57, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22493500

ABSTRACT

The Tol assembly of proteins is an interacting network of proteins located in the Escherichia coli cell envelope that transduces energy and contributes to cell integrity. TolA is central to this network linking the inner and outer membranes by interactions with TolQ, TolR, TolB, and Pal. Group A colicins, such as ColA, parasitize the Tol network through interactions with TolA and/or TolB to facilitate translocation through the cell envelope to reach their cytotoxic site of action. We have determined the first structure of the C-terminal domain of TolA (TolAIII) bound to an N-terminal ColA polypeptide (TA(53-107)). The interface region of the TA(53-107)-TolAIII complex consists of polar contacts linking residues Arg-92 to Arg-96 of ColA with residues Leu-375-Pro-380 of TolA, which constitutes a ß-strand addition commonly seen in more promiscuous protein-protein contacts. The interface region also includes three cation-π interactions (Tyr-58-Lys-368, Tyr-90-Lys-379, Phe-94-Lys-396), which have not been observed in any other colicin-Tol protein complex. Mutagenesis of the interface residues of ColA or TolA revealed that the effect on the interaction was cumulative; single mutations of either partner had no effect on ColA activity, whereas mutations of three or more residues significantly reduced ColA activity. Mutagenesis of the aromatic ring component of the cation-π interacting residues showed Tyr-58 of ColA to be essential for the stability of complex formation. TA(53-107) binds on the opposite side of TolAIII to that used by g3p, ColN, or TolB, illustrating the flexible nature of TolA as a periplasmic hub protein.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Lipoproteins/metabolism , Periplasm/metabolism , Amino Acid Substitution , Binding Sites , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Lipoproteins/genetics , Mutagenesis , Mutation, Missense , Periplasm/genetics , Protein Binding , Protein Structure, Secondary
14.
FEBS Lett ; 584(11): 2249-52, 2010 Jun 03.
Article in English | MEDLINE | ID: mdl-20433837

ABSTRACT

Colicin A enters Escherichia coli cells through interaction with endogenous TolA and TolB proteins. In vitro, binding of the colicin A translocation domain to TolA leads to unfolding of TolA. Through NMR studies of the colicin A translocation domain and polypeptides representing the individual TolA and TolB binding epitopes of colicin A we question if the unfolding of TolA induced by colicin A is likely to be physiologically relevant. The NMR data further reveals that the colicin A binding site on TolA is different from that for colicin N which explains why there is a difference in colicin toxicity for E. coli carrying a TolA-III homologue from Yersina enterocolitica in place of its own TolA-III.


Subject(s)
Colicins/metabolism , Epitopes/metabolism , Escherichia coli Proteins , Escherichia coli/metabolism , Peptides/metabolism , Binding Sites/genetics , Colicins/chemistry , Colicins/genetics , Protein Transport/genetics
15.
Mol Microbiol ; 75(3): 623-36, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19627502

ABSTRACT

Interaction of the TolB box of Group A colicins with the TolB protein in the periplasm of Escherichia coli cells promotes transport of the cytotoxic domain of the colicin across the cell envelope. The crystal structure of a complex between a 107-residue peptide (TA(1-107)) of the translocation domain of colicin A (ColA) and TolB identified the TolB box as a 12-residue peptide that folded into a distorted hairpin within a central canyon of the beta-propeller domain of TolB. Comparison of this structure with that of the colicin E9 (ColE9) TolB box-TolB complex, together with site-directed mutagenesis of the ColA TolB box residues, revealed important differences in the interaction of the two TolB boxes with an overlapping binding site on TolB. Substitution of the TolB box residues of ColA with those of ColE9 conferred the ability to competitively recruit TolB from Pal but reduced the biological activity of the mutant ColA. This datum explains (i) the difference in binding affinities of ColA and ColE9 with TolB, and (ii) the inability of ColA, unlike ColE9, to competitively recruit TolB from Pal, allowing an understanding of how these two colicins interact in a different way with a common translocation portal in E. coli cells.


Subject(s)
Colicins/chemistry , Escherichia coli Proteins/chemistry , Periplasmic Proteins/chemistry , Amino Acid Sequence , Binding Sites , Colicins/genetics , Colicins/metabolism , Crystallography, X-Ray , Escherichia coli Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Periplasmic Proteins/metabolism , Protein Transport
16.
J Biol Chem ; 284(28): 18932-41, 2009 Jul 10.
Article in English | MEDLINE | ID: mdl-19458090

ABSTRACT

Nuclease colicins bind their target receptor in the outer membrane of sensitive cells in the form of a high affinity complex with their cognate immunity proteins. Upon cell entry the immunity protein is lost from the complex by means that are poorly understood. We have developed a sensitive fluorescence assay that has enabled us to study the molecular requirements for immunity protein release. Nuclease colicins use members of the tol operon for their translocation across the outer membrane. We have demonstrated that the amino-terminal 80 residues of the colicin E9 molecule, which is the region that interacts with TolB, are essential for immunity protein release. Using tol deletion strains we analyzed the cellular components necessary for immunity protein release and found that in addition to a requirement for tolB, the tolA deletion strain was most affected. Complementation studies showed that the mutation H22A, within the transmembrane segment of TolA, abolishes immunity protein release. Investigation of the energy requirements demonstrated that the proton motive force of the cytoplasmic membrane is critical. Taken together these results demonstrate for the first time a clear energy requirement for the uptake of a nuclease colicin complex and suggest that energy transduced from the cytoplasmic membrane to the outer membrane by TolA could be the driving force for immunity protein release and concomitant translocation of the nuclease domain.


Subject(s)
Colicins/chemistry , Cell Membrane/metabolism , Colicins/metabolism , Cytoplasm/metabolism , Disulfides/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Gene Deletion , Genetic Complementation Test , Membrane Proteins/chemistry , Microscopy, Fluorescence/methods , Mutation , Periplasmic Proteins/chemistry , Protein Structure, Tertiary , Protein Transport , Surface Plasmon Resonance
17.
Biochem J ; 418(3): 615-24, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19032148

ABSTRACT

We have developed a polypeptide lysostaphin FRET (fluorescence resonance energy transfer) substrate (MV11F) for the endopeptidase activity of lysostaphin. Site-directed mutants of lysostaphin that abolished the killing activity against Staphylococcus aureus also completely inhibited the endopeptidase activity against the MV11 FRET substrate. Lysostaphin-producing staphylococci are resistant to killing by lysostaphin through incorporation of serine residues at positions 3 and 5 of the pentaglycine cross-bridge in their cell walls. The MV11 FRET substrate was engineered to introduce a serine residue at each of four positions of the pentaglycine target site and it was found that only a serine residue at position 3 completely inhibited cleavage. The introduction of random, natural amino acid substitutions at position 3 of the pentaglycine target site demonstrated that only a glycine residue at this position was compatible with lysostaphin cleavage of the MV11 FRET substrate. A second series of polypeptide substrates (decoys) was developed with the GFP (green fluorescent protein) domain of MV11 replaced with that of the DNase domain of colicin E9. Using a competition FRET assay, the lysostaphin endopeptidase was shown to bind to a decoy peptide containing a GGSGG cleavage site. The MV11 substrate provides a valuable system to facilitate structure/function studies of the endopeptidase activity of lysostaphin and its orthologues.


Subject(s)
Endopeptidases/metabolism , Lysostaphin/chemistry , Peptides/chemistry , Cloning, Molecular , Endopeptidases/genetics , Fluorescence Resonance Energy Transfer , Lysostaphin/pharmacology , Mutagenesis, Site-Directed , Peptides/chemical synthesis , Staphylococcus aureus/drug effects
18.
J Bacteriol ; 190(12): 4342-50, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18408035

ABSTRACT

Enzymatic colicins such as colicin E9 (ColE9) bind to BtuB on the cell surface of Escherichia coli and rapidly recruit a second coreceptor, either OmpF or OmpC, through which the N-terminal natively disordered region (NDR) of their translocation domain gains entry into the cell periplasm and interacts with TolB. Previously, we constructed an inactive disulfide-locked mutant ColE9 (ColE9(s-s)) that binds to BtuB and can be reduced with dithiothreitol (DTT) to synchronize cell killing. By introducing unique enterokinase (EK) cleavage sites in ColE9(s-s), we showed that the first 61 residues of the NDR were inaccessible to cleavage when bound to BtuB, whereas an EK cleavage site inserted at residue 82 of the NDR remained accessible. This suggests that most of the NDR is occluded by OmpF shortly after binding to BtuB, whereas the extreme distal region of the NDR is surface exposed before unfolding of the receptor-binding domain occurs. EK cleavage of unique cleavage sites located in the ordered region of the translocation domain or in the distal region of the receptor-binding domain confirmed that these regions of ColE9 remained accessible at the E. coli cell surface. Lack of EK cleavage of the DNase domain of the cell-bound, oxidized ColE9/Im9 complex, and the rapid detection of Alexa Fluor 594-labeled Im9 (Im9(AF)) in the cell supernatant following treatment of cells with DTT, suggested that immunity release occurred immediately after unfolding of the colicin and was not driven by binding to BtuB.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Colicins/metabolism , Enteropeptidase/metabolism , Escherichia coli Proteins/metabolism , Membrane Transport Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Binding Sites , Biological Transport/drug effects , Colicins/chemistry , Colicins/genetics , Dithiothreitol/pharmacology , Enteropeptidase/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Membrane Transport Proteins/genetics , Models, Biological , Porins/genetics , Porins/metabolism , Protein Binding/drug effects , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary
20.
J Bacteriol ; 187(19): 6733-41, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16166536

ABSTRACT

The mechanism by which enzymatic E colicins such as colicin E3 (ColE3) and ColE9 cross the outer membrane, periplasm, and cytoplasmic membrane to reach the cytoplasm and thus kill Escherichia coli cells is unique in prokaryotic biology but is poorly understood. This requires an interaction between TolB in the periplasm and three essential residues, D35, S37, and W39, of a pentapeptide sequence called the TolB box located in the N-terminal translocation domain of the enzymatic E colicins. Here we used site-directed mutagenesis to demonstrate that the TolB box sequence in ColE9 is actually larger than the pentapeptide and extends from residues 34 to 46. The affinity of the TolB box mutants for TolB was determined by surface plasmon resonance to confirm that the loss of biological activity in all except one (N44A) of the extended TolB box mutants correlates with a reduced affinity of binding to TolB. We used a PCR mutagenesis protocol to isolate residues that restored activity to the inactive ColE9 D35A, S37A, and W39A mutants. A serine residue at position 35, a threonine residue at position 37, and phenylalanine or tyrosine residues at position 39 restored biological activity of the mutant ColE9. The average area predicted to be buried upon folding (AABUF) was correlated with the activity of the variants at positions 35, 37, and 39 of the TolB box. All active variants had AABUF profiles that were similar to the wild-type residues at those positions and provided information on the size, stereochemistry, and potential folding pattern of the residues of the TolB Box.


Subject(s)
Colicins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Periplasmic Proteins/metabolism , Amino Acid Sequence , Biological Transport/physiology , Colicins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Periplasmic Proteins/chemistry , Periplasmic Proteins/genetics , Protein Binding , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...