Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4043, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744877

ABSTRACT

The development of new data storage solutions is crucial for emerging digital technologies. Recently, all-optical magnetic switching has been achieved in dielectrics, proving to be faster than traditional methods. Despite this, single-molecule magnets (SMMs), which are an important class of magnetic materials due to their nanometre size, remain underexplored for ultrafast photomagnetic switching. Herein, we report femtosecond time-resolved K-edge X-ray absorption spectroscopy (TR-XAS) on a Mn(III)-based trinuclear SMM. Exploiting the elemental specificity of XAS, we directly track nuclear dynamics around the metal ions and show that the ultrafast dynamics upon excitation of a crystal-field transition are dominated by a magnetically active Jahn-Teller mode. Our results, supported by simulations, reveal minute bond length changes from 0.01 to 0.05 Å demonstrating the sensitivity of the method. These geometrical changes are discussed in terms of magneto-structural relationships and consequently our results illustrate the importance of TR-XAS for the emerging area of ultrafast molecular magnetism.

2.
J Chem Theory Comput ; 20(3): 1337-1346, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38272840

ABSTRACT

We present a detailed investigation into the excited state properties of a planar D3h symmetric azatriangulenetrione, HTANGO, which has received significant interest due to its high solid-state phosphorescence quantum yield and therefore potential as an organic room temperature phosphorescent (ORTP) dye. Using a model linear vibronic coupling Hamiltonian in combination with quantum dynamics simulations, we observe that intersystem crossing (ISC) in HTANGO occurs with a rate of ∼1010 s-1, comparable to benzophenone, an archetypal molecule for fast ISC in heavy metal free molecules. Our simulations demonstrate that the mechanism for fast ISC is associated with the high density of excited triplet states which lie in close proximity to the lowest singlet states, offering multiple channels into the triplet manifold facilitating rapid population transfer. Finally, to rationalize the solid-state emission properties, we use quantum chemistry to investigate the excited state surfaces of the HTANGO dimer, highlighting the influence and importance of the rotational alignment between the two HTANGO molecules in the solid state and how this contributes to high phosphorescence quantum yield.

3.
ACS Appl Energy Mater ; 6(22): 11573-11582, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38037633

ABSTRACT

Organic-inorganic hybrid halide perovskite solar cells (PSCs) have attracted substantial attention from the photovoltaic research community, with the power conversion efficiency (PCE) already exceeding 26%. Current state-of-the-art devices rely on Spiro-OMeTAD as the hole-transporting material (HTM); however, Spiro-OMeTAD is costly due to its complicated synthesis and expensive product purification, while its low conductivity ultimately limits the achievable device efficiency. In this work, we build upon our recently introduced family of low-cost amide-based small molecules and introduce a molecule (termed TPABT) that results in high conductivity values (∼10-5 S cm-1 upon addition of standard ionic additives), outperforming our previous amide-based material (EDOT-Amide-TPA, ∼10-6 S cm-1) while only costing an estimated $5/g. We ascribe the increased optoelectronic properties to favorable molecular packing, as shown by single-crystal X-ray diffraction, which results in close spacing between the triphenylamine blocks. This, in turn, results in a short hole-hopping distance between molecules and therefore good mobility and conductivity. In addition, TPABT exhibits a higher bandgap and is as a result more transparent in the visible range of the solar spectrum, leading to lower parasitic absorption losses than Spiro-OMeTAD, and has increased moisture stability. We applied the molecule in perovskite solar cells and obtained good efficiency values in the ∼15% range. Our approach shows that engineering better molecular packing may be the key to developing high-efficiency, low-cost HTMs for perovskite solar cells.

4.
Struct Dyn ; 10(6): 064101, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37941993

ABSTRACT

Accurate computations of experimental observables are essential for interpreting the high information content held within x-ray spectra. However, for complicated systems this can be difficult, a challenge compounded when dynamics becomes important owing to the large number of calculations required to capture the time-evolving observable. While machine learning architectures have been shown to represent a promising approach for rapidly predicting spectral lineshapes, achieving simultaneously accurate and sufficiently comprehensive training data is challenging. Herein, we introduce Δ-learning for x-ray spectroscopy. Instead of directly learning the structure-spectrum relationship, the Δ-model learns the structure dependent difference between a higher and lower level of theory. Consequently, once developed these models can be used to translate spectral shapes obtained from lower levels of theory to mimic those corresponding to higher levels of theory. Ultimately, this achieves accurate simulations with a much reduced computational burden as only the lower level of theory is computed, while the model can instantaneously transform this to a spectrum equivalent to a higher level of theory. Our present model, demonstrated herein, learns the difference between TDDFT(BLYP) and TDDFT(B3LYP) spectra. Its effectiveness is illustrated using simulations of Rh L3-edge spectra tracking the C-H activation of octane by a cyclopentadienyl rhodium carbonyl complex.

5.
Struct Dyn ; 10(6): 064501, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37941994

ABSTRACT

The evolution of charge carriers in photoexcited room temperature ZnO nanoparticles in solution is investigated using ultrafast ultraviolet photoluminescence spectroscopy, ultrafast Zn K-edge absorption spectroscopy, and ab initio molecular dynamics (MD) simulations. The photoluminescence is excited at 4.66 eV, well above the band edge, and shows that electron cooling in the conduction band and exciton formation occur in <500 fs, in excellent agreement with theoretical predictions. The x-ray absorption measurements, obtained upon excitation close to the band edge at 3.49 eV, are sensitive to the migration and trapping of holes. They reveal that the 2 ps transient largely reproduces the previously reported transient obtained at 100 ps time delay in synchrotron studies. In addition, the x-ray absorption signal is found to rise in ∼1.4 ps, which we attribute to the diffusion of holes through the lattice prior to their trapping at singly charged oxygen vacancies. Indeed, the MD simulations show that impulsive trapping of holes induces an ultrafast expansion of the cage of Zn atoms in <200 fs, followed by an oscillatory response at a frequency of ∼100 cm-1, which corresponds to a phonon mode of the system involving the Zn sub-lattice.

6.
Chem Commun (Camb) ; 59(46): 7100-7103, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37218454

ABSTRACT

We investigate the performance of uncertainty quantification methods, namely deep ensembles and bootstrap resampling, for deep neural network (DNN) predictions of transition metal K-edge X-ray absorption near-edge structure (XANES) spectra. Bootstrap resampling combined with our multi-layer perceptron (MLP) model provides an accurate assessment of uncertainty with >90% of all predicted spectral intensities falling within ±3σ of the true values for held-out data across the nine first-row transition metal K-edge XANES spectra.

7.
Phys Chem Chem Phys ; 25(19): 13325-13334, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37139551

ABSTRACT

Revolutionary developments in ultrafast light source technology are enabling experimental spectroscopists to probe the structural dynamics of molecules and materials on the femtosecond timescale. The capacity to investigate ultrafast processes afforded by these resources accordingly inspires theoreticians to carry out high-level simulations which facilitate the interpretation of the underlying dynamics probed during these ultrafast experiments. In this Article, we implement a deep neural network (DNN) to convert excited-state molecular dynamics simulations into time-resolved spectroscopic signals. Our DNN is trained on-the-fly from first-principles theoretical data obtained from a set of time-evolving molecular dynamics. The train-test process iterates for each time-step of the dynamics data until the network can predict spectra with sufficient accuracy to replace the computationally intensive quantum chemistry calculations required to produce them, at which point it simulates the time-resolved spectra for longer timescales. The potential of this approach is demonstrated by probing dynamics of the ring opening of 1,2-dithiane using sulphur K-edge X-ray absorption spectroscopy. The benefits of this strategy will be more markedly apparent for simulations of larger systems which will exhibit a more notable computational burden, making this approach applicable to the study of a diverse range of complex chemical dynamics.

8.
Adv Mater ; 35(32): e2302146, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37145114

ABSTRACT

Despite record-breaking devices, interfaces in perovskite solar cells are still poorly understood, inhibiting further progress. Their mixed ionic-electronic nature results in compositional variations at the interfaces, depending on the history of externally applied biases. This makes it difficult to measure the band energy alignment of charge extraction layers accurately. As a result, the field often resorts to a trial-and-error process to optimize these interfaces. Current approaches are typically carried out in a vacuum and on incomplete cells, hence values may not reflect those found in working devices. To address this, a pulsed measurement technique characterizing the electrostatic potential energy drop across the perovskite layer in a functioning device is developed. This method reconstructs the current-voltage (JV) curve for a range of stabilization biases, holding the ion distribution "static" during subsequent rapid voltage pulses. Two different regimes are observed: at low biases, the reconstructed JV curve is "s-shaped", whereas, at high biases, typical diode-shaped curves are returned. Using drift-diffusion simulations, it is demonstrated that the intersection of the two regimes reflects the band offsets at the interfaces. This approach effectively allows measurements of interfacial energy level alignment in a complete device under illumination and without the need for expensive vacuum equipment.

9.
Chem Sci ; 14(10): 2572-2584, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36908966

ABSTRACT

Photochemical reactions in solution are governed by a complex interplay between transient intramolecular electronic and nuclear structural changes and accompanying solvent rearrangements. State-of-the-art time-resolved X-ray solution scattering has emerged in the last decade as a powerful technique to observe solute and solvent motions in real time. However, disentangling solute and solvent dynamics and how they mutually influence each other remains challenging. Here, we simultaneously measure femtosecond X-ray emission and scattering to track both the intramolecular and solvation structural dynamics following photoexcitation of a solvated copper photosensitizer. Quantitative analysis assisted by molecular dynamics simulations reveals a two-step ligand flattening strongly coupled to the solvent reorganization, which conventional optical methods could not discern. First, a ballistic flattening triggers coherent motions of surrounding acetonitrile molecules. In turn, the approach of acetonitrile molecules to the copper atom mediates the decay of intramolecular coherent vibrations and induces a further ligand flattening. These direct structural insights reveal that photoinduced solute and solvent motions can be intimately intertwined, explaining how the key initial steps of light harvesting are affected by the solvent on the atomic time and length scale. Ultimately, this work takes a step forward in understanding the microscopic mechanisms of the bidirectional influence between transient solvent reorganization and photoinduced solute structural dynamics.

10.
Phys Chem Chem Phys ; 25(10): 7195-7204, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36820783

ABSTRACT

Excited state dynamics play a critical role across a broad range of scientific fields. Importantly, the highly non-equilibrium nature of the states generated by photoexcitation means that excited state simulations should usually include an accurate description of the coupled electronic-nuclear motion, which often requires solving the time-dependent Schrödinger equation (TDSE). One of the biggest challenges for these simulations is the requirement to calculate the PES over which the nuclei evolve. An effective approach for addressing this challenge is to use the approximate linear vibronic coupling (LVC) Hamiltonian, which enables a model potential to be parameterised using relatively few quantum chemistry calculations. However, this approach is only valid provided there are no large amplitude motions in the excited state dynamics. In this paper we introduce and deploy a metric, the global anharmonicity parameter (GAP), which can be used to assess the accuracy of an LVC potential. Following its derivation, we illustrate its utility by applying it to three molecules exhibiting different rigidity in their excited states.

11.
Chem Mater ; 34(16): 7526-7542, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36032551

ABSTRACT

Carbene-metal-amides (CMAs) are an emerging class of photoemitters based on a linear donor-linker-acceptor arrangement. They exhibit high flexibility about the carbene-metal and metal-amide bonds, leading to a conformational freedom which has a strong influence on their photophysical properties. Herein we report CMA complexes with (1) nearly coplanar, (2) twisted, (3) tilted, and (4) tilt-twisted orientations between donor and acceptor ligands and illustrate the influence of preferred ground-state conformations on both the luminescence quantum yields and excited-state lifetimes. The performance is found to be optimum for structures with partially twisted and/or tilted conformations, resulting in radiative rates exceeding 1 × 106 s-1. Although the metal atoms make only small contributions to HOMOs and LUMOs, they provide sufficient spin-orbit coupling between the low-lying excited states to reduce the excited-state lifetimes down to 500 ns. At the same time, high photoluminescence quantum yields are maintained for a strongly tilted emitter in a host matrix. Proof-of-concept organic light-emitting diodes (OLEDs) based on these new emitter designs were fabricated, with a maximum external quantum efficiency (EQE) of 19.1% with low device roll-off efficiency. Transient electroluminescence studies indicate that molecular design concepts for new CMA emitters can be successfully translated into the OLED device.

12.
Molecules ; 27(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897859

ABSTRACT

We performed a time-gated laser-spectroscopy study in a set of heavy-atom free single BODIPY fluorophores, supported by accurate, excited-state computational simulations of the key low-lying excited states in these chromophores. Despite the strong fluorescence of these emitters, we observed a significant fraction of time-delayed (microseconds scale) emission associated with processes that involved passage through the triplet manifold. The accuracy of the predictions of the energy arrangement and electronic nature of the low-lying singlet and triplet excited states meant that an unambiguous assignment of the main deactivation pathways, including thermally activated delayed fluorescence and/or room temperature phosphorescence, was possible. The observation of triplet state formation indicates a breakthrough in the "classic" interpretation of the photophysical properties of the renowned BODIPY and its derivatives.


Subject(s)
Boron Compounds , Fluorescent Dyes , Boron Compounds/chemistry , Spectrum Analysis
13.
ACS Omega ; 7(21): 18179-18188, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664624

ABSTRACT

Adversarial generative models are becoming an essential tool in molecular design and discovery due to their efficiency in exploring the desired chemical space with the assistance of deep learning. In this article, we introduce an integrated framework by combining the modules of algorithmic synthesis, deep prediction, adversarial generation, and fine screening for the purpose of effective design of the thermally activated delayed fluorescence (TADF) molecules that can be used in the organic light-emitting diode devices. The retrosynthetic rules are employed to algorithmically synthesize the D-A complex based on the empirically defined donor and acceptor moieties, which is followed by the high-throughput labeling and prediction with the deep neural network. The new D-A molecules are subsequently generated via the adversarial autoencoder, with the excited-state property distributions perfectly matching those of the original samples. Fine screening of the generated molecules, including the spin-orbital coupling calculation and the excited-state optimization, is eventually implemented to select the qualified TADF candidates within the novel chemical space. Further investigation shows that the created structures fully mimic the original D-A samples by maintaining a significant charge transfer characteristic, a minimal adiabatic singlet-triplet gap, and a moderate spin-orbital coupling that are desirable for the delayed fluorescence.

15.
J Mater Chem C Mater ; 10(18): 7329-7335, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35706420

ABSTRACT

The aqueous equimolar reaction of Ag(i) ions with the thionucleoside enantiomer (-)6-thioguanosine, ((-)6tGH), yields a one-dimensional coordination polymer {Ag(-)tG} n , the self-assembly of which generates left-handed helical chains. The resulting helicity induces an enhanced chiro-optical response compared to the parent ligand. DFT calculations indicate that this enhancement is due to delocalisation of the excited state along the helical chains, with 7 units being required to converge the calculated CD spectra. At concentrations ≥15 mmol l-1 reactions form a sample-spanning hydrogel which shows self-repair capabilities with instantaneous recovery in which the dynamic reversibility of the coordination chains appears to play a role. The resulting gel exhibits circularly polarised luminescence (CPL) with a large dissymmetry factor of -0.07 ± 0.01 at 735 nm, a phenomenon not previously observed for this class of coordination polymer.

16.
Dalton Trans ; 51(28): 10751-10757, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35583816

ABSTRACT

Ultrafast transient absorption spectra were recorded for [Mn(terpy)X3], where X = Cl, F, and N3, to explore photoinduced switching from axial to equatorial Jahn-Teller (JT) distortion. Strong oscillations were observed in the transients, corresponding to a wavepacket on the excited-state potential energy surface with oscillation frequency around 115 cm-1 for all three complexes. Multireference quantum chemistry calculations indicate that the reaction coordinate is a pincer-like motion of the terpyridine ligand arising from bond length changes in the excited state due to the JT switch. We observed long dephasing times of the wavepacket, with times of 620 fs for [Mn(terpy)Cl3], 450 fs for [Mn(terpy)F3], and 370 fs for [Mn(terpy)(N3)3]. The dephasing time of these coherences decreases with an increasing number of vibrational modes at lower energy than the mode dominating the reaction coordinate, suggesting they act as an effective bath to dissipate the excess energy obtained from photoexcitation.

17.
Phys Chem Chem Phys ; 24(16): 9156-9167, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35393987

ABSTRACT

X-ray absorption spectroscopy at the L2/3 edge can be used to obtain detailed information about the local electronic and geometric structure of transition metal complexes. By virtue of the dipole selection rules, the transition metal L2/3 edge usually exhibits two distinct spectral regions: (i) the "white line", which is dominated by bound electronic transitions from metal-centred 2p orbitals into unoccupied orbitals with d character; the intensity and shape of this band consequently reflects the d density of states (d-DOS), which is strongly modulated by mixing with ligand orbitals involved in chemical bonding, and (ii) the post-edge, where oscillations encode the local geometric structure around the X-ray absorption site. In this Article, we extend our recently-developed XANESNET deep neural network (DNN) beyond the K-edge to predict X-ray absorption spectra at the Pt L2/3 edge. We demonstrate that XANESNET is able to predict Pt L2/3 -edge X-ray absorption spectra, including both the parts containing electronic and geometric structural information. The performance of our DNN in practical situations is demonstrated by application to two Pt complexes, and by simulating the transient spectrum of a photoexcited dimeric Pt complex. Our discussion includes an analysis of the feature importance in our DNN which demonstrates the role of key features and assists with interpreting the performance of the network.


Subject(s)
Coordination Complexes , Transition Elements , Coordination Complexes/chemistry , Neural Networks, Computer , X-Ray Absorption Spectroscopy , X-Rays
18.
Dalton Trans ; 51(28): 10707-10713, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-34854445

ABSTRACT

Monomeric organolithium (LiR) complexes could provide enhanced Li-C bond reactivity and suggest mechanisms for a plethora of LiR-mediated reactions. They are highly sought-after but remain a synthetic challenge for organometallic chemists. In this work, we report the synthesis and characterisation of a monomeric (trimethylsilyl)methyl lithium complex, namely [Li(CH2SiMe3)(κ3-N,N',N''-Me6Tren)] (1), where Me6Tren is a tetradentate neutral amine ligand. The structure of 1 was comprehensively examined by single-crystal X-ray diffraction, variable temperature NMR spectroscopy and electron absorption spectroscopy. Complex 1 decomposes via ligand C-H and C-N activations to produce a Li amide complex 2. Preliminary reactivity studies of 1 reveal CO insertion and C-H activation reaction patterns.


Subject(s)
Amides , Lithium , Amides/chemistry , Crystallography, X-Ray , Ligands , Lithium/chemistry , Magnetic Resonance Spectroscopy
19.
Chem Commun (Camb) ; 57(77): 9914-9917, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34498020

ABSTRACT

We study the influence of the physical and chemical structure on the chiroptical response of fluorene-based polymeric systems, namely poly(9,9-dioctylfluorene) (PFO) and the donor-acceptor type copolymer poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT). We reveal the significance of electric-magnetic coupling, at both short (molecular-level) and intermediate (delocalised over multiple polymer chains) length scales, on the magnitude of the dissymmetry. These findings provide a framework for the design of new materials with an enhanced chiroptical response.

20.
J Chem Theory Comput ; 17(8): 5021-5033, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34264669

ABSTRACT

Combined molecular dynamics (MD) and quantum mechanics (QM) simulation procedures have gained popularity in modeling the spectral properties of functional organic molecules. However, the potential energy surfaces used to propagate long-time scale dynamics in these simulations are typically described using general, transferable force fields designed for organic molecules in their electronic ground states. These force fields do not typically include spectroscopic data in their training, and importantly, there is no general protocol for including changes in geometry or intermolecular interactions with the environment that may occur upon electronic excitation. In this work, we show that parameters tailored for thermally activated delayed fluorescence (TADF) emitters used in organic light-emitting diodes (OLEDs), in both their ground and electronically excited states, can be readily derived from a small number of QM calculations using the QUBEKit (QUantum mechanical BEspoke toolKit) software and improve the overall accuracy of these simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...