Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Today Bio ; 26: 101076, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38711938

ABSTRACT

Periprosthetic infection and mechanical loosening are two leading causes of implant failure in orthopedic surgery that have devastating consequences for patients both physically and financially. Hence, advanced prostheses to simultaneously prevent periprosthetic infection and promote osseointegration are highly desired to achieve long-term success in orthopedics. In this study, we proposed a multifunctional three-dimensional printed porous titanium alloy prosthesis coated with imidazolium ionic liquid. The imidazolium ionic liquid coating exhibited excellent bacterial recruitment property and near-infrared (NIR) triggered photothermal bactericidal activity, enabling the prosthesis to effectively trap bacteria in its vicinity and kill them remotely via tissue-penetrating NIR irradiation. In vivo anti-infection and osseointegration investigations in infected animal models confirmed that our antibacterial prosthesis could provide long-term and sustainable prevention against periprosthetic infection, while promoting osseointegration simultaneously. It is expected to accelerate the development of next-generation prostheses and improve patient outcomes after prosthesis implantation.

2.
Biomacromolecules ; 24(9): 4170-4179, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37592721

ABSTRACT

Endotoxin adsorption has received extensive attention in the field of blood purification. However, developing highly efficient endotoxin adsorbents with excellent hemocompatibility remains challenging. In this study, we propose a new approach for developing the functional polyethersulfone (PES) membrane to remove endotoxins. First, the PES polymer is grafted with polyethylene glycol methyl acrylate (PEG-MA) in a homogeneous phase system via γ irradiation, and PES-g-PEG can be directly used to prepare the membrane by the phase inversion method. Then, polydopamine (PDA) is coated as an adhesive layer onto a PES-g-PEG membrane in an alkaline aqueous solution, and lysozyme (Lyz) is covalently immobilized with PDA through the Schiff base reaction. Lysozyme acts as an affinity adsorption ligand of endotoxin through charge and hydrophobic action. Our study reveals that the PEG branched chain and the PDA coating on the PES membrane can maintain the secondary structure of lysozyme, and thus, the immobilized Lyz can maintain high activity. The adsorption capacity of endotoxins for the PES-g-PEG/PDA/Lyz membrane is 1.28 EU/mg, with an equilibrium adsorption time of 6 h. Therefore, the PES-g-PEG/PDA/Lyz membrane shows great potential application in the treatment of endotoxemia.


Subject(s)
Endotoxins , Muramidase , Sulfones , Polyethylene Glycols
3.
Food Chem ; 417: 135919, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36924721

ABSTRACT

In this study, the impact of 60Co-γ ray irradiation treatment on the content of active chemicals and their functions in Citri Sarcodactylis Fructus (CSF) was assessed. Scanning electron microscopy, Fourier transform infrared spectroscopy, and γ-ray diffraction revealed physical structure changes in CSF powder. According to the findings, the content of total flavonoids in the ethanol extract of CSF increased by 9.5%-21.62%, 7-hydroxycoumarin, hesperidin, 5,7-dimethoxycoumarin, and 5-methoxypsoralen increased by 5.31%-51.8%, 10.07%-99.81%, 6.6%-62.29%, and 3.03%-300%, respectively, when the irradiation dosage was raised, and the antibacterial, anti-inflammatory, antioxidant, and anticancer properties were all raised considerably. These results imply that the principal components and activity changes are proportional to the irradiation dosage. At present, the findings of this study serve as a reference for the use of irradiation technology in assisting extraction and enhancing the effects of functional foods.


Subject(s)
Anti-Bacterial Agents , Fruit , Antioxidants/pharmacology , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
4.
Colloids Surf B Biointerfaces ; 181: 918-926, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31382341

ABSTRACT

Postoperative adhesion may form as the result of a complicated fibrosis and inflammatory response, thus leads to a series of complications or increases the risk of surgery failure. Herein, we prepared poly (lactic-co-glycolic acid)-graft-polyvinylpyrrolidone/polyiodide (PLGA-g-PVP/I) electrospun fibrous membranes to prevent postoperative adhesion and infection formation. Firstly, hydrophilic PVP molecules were grafted on the surface of PLGA powders by gamma ray, and then iodine ions were coordinated with the grafted PVP. Subsequently, PLGA-g-PVP/I fibrous membranes were prepared by electrospinning. The PLGA-g-PVP/I membranes were analyzed via UV-vis, FTIR, Raman, and XPS. The formed polyiodide endowed the membranes with sustained antibacterial activity. The antimicrobial property of PLGA-g-PVP/I membranes was ascribed to the synergistic effect of intracellular ROS production and glutathione oxidation. Furthermore, the prevention efficacy of postoperative abdominal adhesion from the PLGA-g-PVP/I composite membranes was characterized in a rat model of sidewall defect-cecum abrasion. The results demonstrated that the PLGA-g-PVP/I fibrous membranes could prevent the postoperative abdominal adhesion effectively. Therefore, to endow the PLGA-g-PVP/I electrospun fibrous membranes with durable antibacterial property may be a promising strategy towards an anti-bacterial and anti-adhesion system for commercial and clinical uses.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Escherichia coli/drug effects , Periodic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Povidone/chemistry , Animals , Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemistry , Cell Proliferation/drug effects , Fibroblasts/drug effects , Mice , Microbial Sensitivity Tests , Oxidative Stress/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats , Ultraviolet Rays
5.
Mater Sci Eng C Mater Biol Appl ; 63: 142-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27040205

ABSTRACT

A fast, easy and novel method for preparing biodegradable polymer films with silver nanoparticles was investigated to endow the material with excellent biocompatibility and antibacterial property. Silver nanoparticles (Ag NPs) were immobilized on the surface of polylactic acid (PLA) film by gamma radiation induced grafting of N-vinyl pyrrolidone (NVP). In this method, poly (N-vinyl pyrrolidone) (PVP) was produced and grafted onto the surface of PLA film by gamma radiation polymerization of NVP. PVP acted as both a bridge to connect the Ag NPs with the PLA film, and a stabilizer to protect the Ag NPs from agglomeration. The effect of various reaction parameters, including NVP/Ag mole ratio and radiation dose, on the fabrication of PLA-g-NVP/Ag film was demonstrated. Moreover, the interaction between PVP and Ag NPs was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, that revealed the Ag NPs coordinated through the oxygen atom on the carbonyl group of PVP at 15 kGy radiation dose, but through the nitrogen atom and the oxygen atom of the amide group of PVP at 1 kGy dose.


Subject(s)
Metal Nanoparticles/chemistry , Polyesters/chemistry , Pyrrolidinones/chemistry , Silver/chemistry , Gamma Rays , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Temperature , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...