Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1188286, 2023.
Article in English | MEDLINE | ID: mdl-37521934

ABSTRACT

In this study, we propose a high-throughput and low-cost automatic detection method based on deep learning to replace the inefficient manual counting of rapeseed siliques. First, a video is captured with a smartphone around the rapeseed plants in the silique stage. Feature point detection and matching based on SIFT operators are applied to the extracted video frames, and sparse point clouds are recovered using epipolar geometry and triangulation principles. The depth map is obtained by calculating the disparity of the matched images, and the dense point cloud is fused. The plant model of the whole rapeseed plant in the silique stage is reconstructed based on the structure-from-motion (SfM) algorithm, and the background is removed by using the passthrough filter. The downsampled 3D point cloud data is processed by the DGCNN network, and the point cloud is divided into two categories: sparse rapeseed canopy siliques and rapeseed stems. The sparse canopy siliques are then segmented from the original whole rapeseed siliques point cloud using the sparse-dense point cloud mapping method, which can effectively save running time and improve efficiency. Finally, Euclidean clustering segmentation is performed on the rapeseed canopy siliques, and the RANSAC algorithm is used to perform line segmentation on the connected siliques after clustering, obtaining the three-dimensional spatial position of each silique and counting the number of siliques. The proposed method was applied to identify 1457 siliques from 12 rapeseed plants, and the experimental results showed a recognition accuracy greater than 97.80%. The proposed method achieved good results in rapeseed silique recognition and provided a useful example for the application of deep learning networks in dense 3D point cloud segmentation.

2.
Plants (Basel) ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501381

ABSTRACT

In this paper, a novel point cloud segmentation and completion framework is proposed to achieve high-quality leaf area measurement of melon seedlings. In particular, the input of our algorithm is the point cloud data collected by an Azure Kinect camera from the top view of the seedlings, and our method can enhance measurement accuracy from two aspects based on the acquired data. On the one hand, we propose a neighborhood space-constrained method to effectively filter out the hover points and outlier noise of the point cloud, which can enhance the quality of the point cloud data significantly. On the other hand, by leveraging the purely linear mixer mechanism, a new network named MIX-Net is developed to achieve segmentation and completion of the point cloud simultaneously. Different from previous methods that separate these two tasks, the proposed network can better balance these two tasks in a more definite and effective way, leading to satisfactory performance on these two tasks. The experimental results prove that our methods can outperform other competitors and provide more accurate measurement results. Specifically, for the seedling segmentation task, our method can obtain a 3.1% and 1.7% performance gain compared with PointNet++ and DGCNN, respectively. Meanwhile, the R2 of leaf area measurement improved from 0.87 to 0.93 and MSE decreased from 2.64 to 2.26 after leaf shading completion.

3.
Neural Netw ; 137: 188-199, 2021 May.
Article in English | MEDLINE | ID: mdl-33647536

ABSTRACT

The encoder-decoder structure has been introduced into semantic segmentation to improve the spatial accuracy of the network by fusing high- and low-level feature maps. However, recent state-of-the-art encoder-decoder-based methods can hardly attain the real-time requirement due to their complex and inefficient decoders. To address this issue, in this paper, we propose a lightweight bilateral attention decoder for real-time semantic segmentation. It consists of two blocks and can fuse different level feature maps via two steps, i.e., information refinement and information fusion. In the first step, we propose a channel attention branch to refine the high-level feature maps and a spatial attention branch for the low-level ones. The refined high-level feature maps can capture more exact semantic information and the refined low-level ones can capture more accurate spatial information, which significantly improves the information capturing ability of these feature maps. In the second step, we develop a new fusion module named pooling fusing block to fuse the refined high- and low-level feature maps. This fusion block can take full advantages of the high- and low-level feature maps, leading to high-quality fusion results. To verify the efficiency of the proposed bilateral attention decoder, we adopt a lightweight network as the backbone and compare our proposed method with other state-of-the-art real-time semantic segmentation methods on the Cityscapes and Camvid datasets. Experimental results demonstrate that our proposed method can achieve better performance with a higher inference speed. Moreover, we compare our proposed network with several state-of-the-art non-real-time semantic segmentation methods and find that our proposed network can also attain better segmentation performance.


Subject(s)
Machine Learning , Pattern Recognition, Automated/methods , Semantics , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...